FACTORISATION OF TWO-VARIABLE p-ADIC L-FUNCTIONS

ANTONIO LEI

Abstract

Let f be a modular form which is non-ordinary at p. Loeffler has recently constructed four two-variable p-adic L-functions associated to f. In the case where $a_{p}=0$, he showed that, as in the one-variable case, Pollack's plus and minus splitting applies to these new objects. In this article, we show that such a splitting can be generalised to the case where $a_{p} \neq 0$ using Sprung's logarithmic matrix.

1. p-ADIC LOGARITHMIC MATRICES

We first review the theory of Sprung's factorisation of one-variable p-adic L functions in [Spr12b, Spr12a], which is a generalisation of Pollack's work [Pol03].

Let $f=\sum_{n \geq 1} a_{n} q^{n}$ be a normalised eigen-newform of weight 2 and level N with nebentypus ϵ. Fix an odd ${ }^{1}$ prime p that does not divide N and $v_{p}\left(a_{p}\right) \neq 0$. Here, v_{p} is the normalised p-adic valuation with $v_{p}(p)=1$. Let α and β be the two roots to

$$
X^{2}-a_{p} X+\epsilon(p) p=0
$$

with $r=v_{p}(\alpha)$ and $s=v_{p}(\beta)$. Note in particular that $0<r, s<1$.
Let G be a one-dimensional p-adic Lie group, which is of the form $\Delta \times\left\langle\gamma_{p}\right\rangle$, where Δ is a finite abelian group and $\left\langle\gamma_{p}\right\rangle \cong \mathbb{Z}_{p}$. If H is a subset of G, we write 1_{H} for the indicator function of H on G. Let F be a finite extension of \mathbb{Q}_{p} that contains $\mu_{|\Delta|}, a_{n}$ and $\epsilon(n)$ for all $n \geq 1$. For a real number $u \geq 0$, we define $D^{(u)}(G, F)$ to be the set of distributions μ on G such that for a fixed integer $n \geq 0$,

$$
\inf _{g \in G} v_{p}\left(\mu\left(1_{g\left\langle\gamma_{p}\right\rangle p^{n}}\right)\right) \geq R-u n
$$

for some constant $R \in \mathbb{R}$ that only depends on μ. Note that we may identify $D^{(u)}(G, F)$ with the set of power series

$$
\sum_{n \geq 0} \sum_{\sigma \in \Delta} c_{\sigma, n} \sigma\left(\gamma_{p}-1\right)^{n}
$$

where $c_{\sigma, n} \in F$ and $\sup _{n>0} \frac{\left|c_{\sigma, n}\right|_{p}}{n^{u}}<\infty$ for all $\sigma \in \Delta$ (here $|\cdot|_{p}$ denotes the p-adic norm with $|p|_{p}=p^{-1}$). Let $X=\gamma_{p}-1$. If η is a character on Δ, we write $e_{\eta} \mu$ for the η-isotypical component of μ, namely, the power series

$$
\sum_{n \geq 0} \sum_{\sigma \in \Delta} c_{\sigma, n} \eta(\sigma)\left(\gamma_{p}-1\right)^{n} \in F[[X]] .
$$

[^0]For $\mu_{1} \in D^{(u)}\left(\left\langle\gamma_{p}\right\rangle, F\right)$ and $\mu_{2} \in D^{(u)}(G, F)$, we say that μ_{1} divides μ_{2} over $D^{(u)}(G, F)$ if μ_{1} divides all isotypical components of μ_{2} as elements in $F[[X]]$.
Definition 1.1. We say that $\left(\mu_{\alpha}, \mu_{\beta}\right) \in D^{(r)}(G, F) \oplus D^{(s)}(G, F)$ is a pair of interpolating functions for f if for all non-trivial characters ω on G that send γ_{p} to a primitive p^{n-1}-st root of unity for some $n \geq 1$, there exists a constant $C_{\omega} \in \bar{F}$ such that

$$
\mu_{\alpha}(\omega)=\alpha^{-n} C_{\omega} \quad \text { and } \quad \mu_{\beta}(\omega)=\beta^{-n} C_{\omega}
$$

Remark 1.2. The p-adic L-functions L_{α}, L_{β} of Amice-Vélu [AV75] and Višik [Viš76] associated to f satisfy the property stated above, with G being the $G a$ lois group $\operatorname{Gal}\left(\mathbb{Q}\left(\mu_{p^{\infty}}\right) / \mathbb{Q}\right)$ and C_{ω} being the algebraic part of the complex L-value $L\left(f, \omega^{-1}, 1\right)$ multiplied by some fudge factor.

Definition 1.3. A matrix $M_{p}=\left(\begin{array}{ll}m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2}\end{array}\right)$ with $m_{1,1}, m_{2,1} \in D^{(r)}\left(\left\langle\gamma_{p}\right\rangle, F\right)$ and $m_{1,2}, m_{2,2} \in D^{(s)}\left(\left\langle\gamma_{p}\right\rangle, F\right)$, is called a p-adic logarithmic matrix associated to f if $\operatorname{det}\left(M_{p}\right)$ is, up to a constant in F^{\times}, equal to $\log _{p}\left(\gamma_{p}\right) /\left(\gamma_{p}-1\right)$, and $\operatorname{det}\left(M_{p}\right)$ divides both

$$
m_{2,2} \mu_{\alpha}-m_{2,1} \mu_{\beta} \quad \text { and } \quad-m_{1,2} \mu_{\alpha}+m_{1,1} \mu_{\beta}
$$

over $D^{(1)}(G, F)$ for all interpolating functions $\mu_{\alpha}, \mu_{\beta}$ for f.
Lemma 1.4. Let $\mu_{\alpha}, \mu_{\beta}$ be a pair of interpolating functions for f. If M_{p} is a padic logarithmic matrix associated to f, then there exist $\mu_{\#}, \mu_{b} \in D^{(0)}(G, F)$ such that

$$
\left(\begin{array}{ll}
\mu_{\alpha} & \mu_{\beta}
\end{array}\right)=\left(\begin{array}{ll}
\mu_{\#} & \mu_{b}
\end{array}\right) M_{p}
$$

Proof. Let

$$
\mu_{\#}:=\frac{m_{2,2} \mu_{\alpha}-m_{2,1} \mu_{\beta}}{\operatorname{det}\left(M_{p}\right)} \quad \text { and } \quad \mu_{b}:=\frac{-m_{1,2} \mu_{\alpha}+m_{1,1} \mu_{\beta}}{\operatorname{det}\left(M_{p}\right)} .
$$

By definition, the numerators lie inside $D^{(1)}(G, F)$ and the coefficients of $\operatorname{det}\left(M_{p}\right)$ have the same growth rate as those of $\log _{p}\left(\gamma_{p}\right)$, so $\mu_{\#}$ and μ_{b} lie inside $D^{(0)}(G, F)$. The factorisation follows from the fact that

$$
\left(\begin{array}{cc}
m_{2,2} & -m_{1,2} \\
-m_{2,1} & m_{1,1}
\end{array}\right) M_{p}=\left(\begin{array}{cc}
\operatorname{det}\left(M_{p}\right) & 0 \\
0 & \operatorname{det}\left(M_{p}\right)
\end{array}\right) .
$$

We now recall the construction of Sprung's canonical p-adic logarithmic matrix associated to f.

Let $C_{n}=\left(\begin{array}{cc}a_{p} & 1 \\ -\epsilon(p) \Phi_{p^{n}}\left(\gamma_{p}\right) & 0\end{array}\right)$, where $\Phi_{p^{n}}$ denotes the p^{n}-th cyclotomic polynomial for $n \geq 1, C=\left(\begin{array}{cc}a_{p} & 1 \\ -\epsilon(p) p & 0\end{array}\right)$ and $A=\left(\begin{array}{cc}-1 & -1 \\ \beta & \alpha\end{array}\right)$. Define

$$
M_{p}^{(n)}:=C_{1} \cdots C_{n} C^{-n-2} A
$$

Theorem 1.5 (Sprung). The entries of the sequence of matrices $M_{p}^{(n)}$ converge (under the standard sup-norm on p-adic power series) in $D^{(1)}\left(\left\langle\gamma_{p}\right\rangle, F\right)$ as $n \rightarrow \infty$ and the limit $\lim _{n \rightarrow \infty} M_{p}^{(n)}$ is a p-adic logarithmic matrix associated to f.

Proof. We only sketch our proof here since this is merely a slight generalisation of Sprung's results in [Spr12a, Spr12b].

Since $C_{n+1} \equiv C \bmod (X+1)^{p^{n}}-1$, we have

$$
M_{p}^{(n+1)} \equiv M_{p}^{(n)} \quad \bmod (X+1)^{p^{n}}-1 .
$$

Note that

$$
A^{-1} C A=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

which implies that

$$
C^{-n-2} A=A\left(\begin{array}{cc}
\alpha^{-n-2} & 0 \tag{1}\\
0 & \beta^{-n-2}
\end{array}\right)=\left(\begin{array}{cc}
-\alpha^{-n-2} & -\beta^{-n-2} \\
\beta \alpha^{-n-2} & \alpha \beta^{-n-2}
\end{array}\right) .
$$

Since all the entries in $C_{1} \cdots C_{n}$ are integral, the coefficients of the first (respectively second) row of $M_{p}^{(n)}$ grow like $O\left(p^{-r n}\right)$ (respectively $O\left(p^{-s n}\right)$) as $n \rightarrow \infty$. Therefore, by [PR94, §1.2.1], the entries of the first (respectively second) row of $M_{p}^{(n)}$ converge to elements in $D^{(r)}\left(\left\langle\gamma_{p}\right\rangle, F\right)$ (respectively $\left.D^{(s)}\left(\left\langle\gamma_{p}\right\rangle, F\right)\right)$.

Let $M_{p}=\left(\begin{array}{ll}m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2}\end{array}\right)$ be the limit $\lim _{n \rightarrow \infty} M_{p}^{(n)}$. If ω is a character that sends γ_{p} to a primitive p^{n-1}-st root of unity, then

$$
M_{p}(\omega)=C_{1}(\omega) \cdots C_{n-1}(\omega) C^{-n-1} A
$$

Note that $C_{n-1}(\omega)=\left(\begin{array}{cc}a_{p} & 1 \\ 0 & 0\end{array}\right)$, so from (1), we see that there exist two constants $A_{\omega}, B_{\omega} \in \bar{F}$ such that

$$
M_{p}(\omega)=\left(\begin{array}{ll}
a_{p} A_{\omega} & A_{\omega} \\
a_{p} B_{\omega} & B_{\omega}
\end{array}\right)\left(\begin{array}{ll}
-\alpha^{-n-1} & -\beta^{-n-1} \\
\beta \alpha^{-n-1} & \alpha \beta^{-n-1}
\end{array}\right)=\left(\begin{array}{ll}
-\alpha^{-n} A_{\omega} & -\beta^{-n} A_{\omega} \\
-\alpha^{-n} B_{\omega} & -\beta^{-n} B_{\omega}
\end{array}\right) .
$$

In particular, if $\mu_{\alpha}, \mu_{\beta}$ is a pair of interpolating functions for f,

$$
m_{2,2}(\omega) \mu_{\alpha}(\omega)-m_{2,1}(\omega) \mu_{\beta}(\omega)=-m_{1,2}(\omega) \mu_{\alpha}(\omega)+m_{1,1}(\omega) \mu_{\beta}(\omega)=0
$$

By [Spr12a, Remark 2.19], $\operatorname{det}\left(M_{p}\right)=\frac{\log _{p}(1+X)}{X} \times \frac{\beta-\alpha}{(\alpha \beta)^{2}}$. But $\alpha \neq \beta$ by [CB98, Theorem 2.1], hence the result.

Remark 1.6. Similar logarithmic matrices have been constructed in [LLZ10] using the theory of Wach modules, but they are not canonical.

2. Two-variable p-ADIC L-FUNCTIONS

2.1. Setup for two-variable distributions. We now fix an imaginary quadratic field K in which p splits into $\mathfrak{p p}$. If \mathfrak{I} is an ideal of K, we write $G_{\mathfrak{J}}$ for the ray class group of K modulo \mathfrak{I}. Define

$$
G_{p^{\infty}}=\lim _{\leftrightarrows} G_{p^{n}}, \quad G_{\mathfrak{p}^{\infty}}=\lim _{\rightleftarrows} G_{\mathfrak{p}^{n}}, \quad G_{\overline{\mathfrak{p}}^{\infty}}=\lim _{\rightleftarrows} G_{\overline{\mathfrak{p}}^{n}} .
$$

These are the Galois groups of the ray class fields $K\left(p^{\infty}\right), K\left(\mathfrak{p}^{\infty}\right)$ and $K\left(\overline{\mathfrak{p}}^{\infty}\right)$ respectively. Fix topological generators $\gamma_{\mathfrak{p}}$ and $\gamma_{\overline{\mathfrak{p}}}$ of the \mathbb{Z}_{p}-parts of $G_{\mathfrak{p} \infty}$ and $G_{\overline{\mathfrak{p}} \infty}$ respectively. We have an isomorphism

$$
G_{p^{\infty}} \cong \Delta \times\left\langle\gamma_{\mathfrak{p}}\right\rangle \times\left\langle\gamma_{\bar{p}}\right\rangle
$$

where Δ is a finite abelian group. For real numbers $u, v \geq 0$, we define $D^{(u, v)}\left(G_{p^{\infty}}, F\right)$ to be the set of distributions μ of $G_{p \infty}$ such that for fixed integers $m, n \geq 0$,

$$
\inf _{g \in G_{p} \infty} v_{p}\left(\mu\left(1_{g\left\langle\gamma_{\mathfrak{p}}\right\rangle^{p m}\left\langle\gamma_{\bar{p}}\right\rangle^{p^{n}}}\right)\right) \geq R-u m-v n
$$

for some constant $R \in \mathbb{R}$ that only depends on μ.
Let $X=\gamma_{\mathfrak{p}}-1$ and $Y=\gamma_{\overline{\mathfrak{p}}}-1$. We may identify an element of $D^{(u, v)}\left(G_{p^{\infty}}, F\right)$ with a power series

$$
\sum_{i, j \geq 0} \sum_{\sigma \in \Delta} c_{\sigma, i, j} \sigma X^{i} Y^{j}
$$

where $c_{\sigma, i, j} \in F$. On identifying each Δ-isotypical component of μ with a power series in X and Y, we have the notion of divisibility as in the one-dimensional case. We define the operator $\partial_{\mathfrak{p}}$ to be the partial derivative $\frac{\partial}{\partial X}$.

For $\star \in\{\mathfrak{p}, \overline{\mathfrak{p}}\}$, we let Ω_{\star} be the set of characters on $G_{p^{\infty}}$ with conductor $(\star)^{n}$ for some integer $n \geq 1$.

Let $\mu \in D^{(u, v)}\left(G_{p^{\infty}}, F\right)$ where $u, v \geq 0$. If $\omega_{\mathfrak{p}} \in \Omega_{\mathfrak{p}}$, we define a distribution $\mu^{\left(\omega_{\mathfrak{p}}\right)}$ by

$$
\mu^{\left(\omega_{\mathfrak{p}}\right)}\left(\omega_{\overline{\mathfrak{p}}}\right)=\mu\left(\omega_{\mathfrak{p}} \omega_{\overline{\mathfrak{p}}}\right)
$$

Lemma 2.1. The distribution $\mu^{\left(\omega_{\mathfrak{p}}\right)}$ lies inside $D^{(v)}\left(G_{\bar{p}^{\infty}}, F^{\prime}\right)$, where F^{\prime} is the extension $F\left(\omega_{\mathfrak{p}}\left(\gamma_{\mathfrak{p}}\right)\right)$.
Proof. By definition, for any integers $m, n \geq 0$, we have

$$
\begin{equation*}
\inf _{g \in G_{p} \infty} v_{p}\left(\mu\left(1_{g\left\langle\gamma_{p}\right\rangle p^{m}\left\langle\gamma_{\bar{p}}\right\rangle p^{n}}\right)\right) \geq R-u m-v n \tag{2}
\end{equation*}
$$

for some R. Since $\omega_{\mathfrak{p}}$ is of finite order, we have

$$
\omega_{\mathfrak{p}}=\sum_{h \in G_{p} \infty / \operatorname{ker}\left(\omega_{\mathfrak{p}}\right)} \omega_{\mathfrak{p}}(h) 1_{h \operatorname{ker}\left(\omega_{\mathfrak{p}}\right)} .
$$

Moreover,

$$
\begin{equation*}
v_{p}\left(\omega_{\mathfrak{p}}(h)\right)=0 \tag{3}
\end{equation*}
$$

for all h and $\operatorname{ker}\left(\omega_{\mathfrak{p}}\right) \cap\left\langle\gamma_{\mathfrak{p}}\right\rangle\left\langle\gamma_{\overline{\mathfrak{p}}}\right\rangle=\left\langle\gamma_{\mathfrak{p}}\right\rangle^{m}\left\langle\gamma_{\overline{\mathfrak{p}}}\right\rangle$ for some integer m.
If $g \in G_{\overline{\mathfrak{p}}}$ and $n \geq 0$ is an integer, we may lift the coset $g\left\langle\left.\gamma_{\overline{\mathfrak{p}}}\right|^{n}\right.$ in $G_{\overline{\mathfrak{p}}}$ to one in $G_{p^{\infty}}$ that is of the form $g^{\prime}\left\langle\gamma_{\mathfrak{p}}\right\rangle\left\langle\gamma_{\overline{\mathfrak{p}}}\right)^{p^{n}}$. Therefore,

$$
\begin{aligned}
\mu^{\left(\omega_{\mathfrak{p}}\right)}\left(1_{g\left\langle\gamma_{\bar{p}}\right\rangle p^{p^{n}}}\right) & =\mu\left(\sum_{h \in G_{p} \infty / \operatorname{ker}\left(\omega_{\mathfrak{p}}\right)} \omega_{\mathfrak{p}}(h) 1_{h \operatorname{ker}\left(\omega_{\mathfrak{p}}\right)} 1_{g^{\prime}\left\langle\gamma_{\mathfrak{p}}\right\rangle\left\langle\gamma_{\bar{p}}\right\rangle p^{p^{n}}}\right) \\
& =\sum_{h \in G_{p} \infty / \operatorname{ker}\left(\omega_{\mathfrak{p}}\right)} \omega_{\mathfrak{p}}(h) \mu\left(1_{h \operatorname{ker}\left(\omega_{\mathfrak{p}}\right) \cap g^{\prime}\left\langle\gamma_{\mathfrak{p}}\right\rangle\left\langle\gamma_{\bar{p}}\right\rangle^{p^{n}}}\right) \\
& =\sum_{\substack{h \in G_{p} \infty / \operatorname{ker}\left(\omega_{\mathfrak{p}}\right) \\
h \in g^{\prime}\left\langle\gamma_{\mathfrak{p}}\right\rangle\left\langle\gamma_{\bar{p}}\right\rangle^{p^{n}}}} \omega_{\mathfrak{p}}(h) \mu\left(1_{\left.h\left\langle\gamma_{\mathfrak{p}}\right\rangle\right\rangle^{p}\left\langle\gamma_{\bar{p}}\right\rangle^{p^{n}}}\right) .
\end{aligned}
$$

Therefore, by (2) and (3), we have

$$
v_{p}\left(\mu^{\left(\omega_{\mathfrak{p}}\right)}\left(1_{g\left\langle\gamma_{\bar{p}}\right\rangle^{n}}\right)\right) \geq(R-u m)-v n
$$

as required.

Similarly, for $\omega_{\overline{\mathfrak{p}}} \in \Omega_{\overline{\mathfrak{p}}}$, we may define a distribution $\mu^{\left(\omega_{\bar{p}}\right)} \in D^{(u)}\left(G_{\mathfrak{p} \infty}, F^{\prime}\right)$, where $F^{\prime}=F\left(\omega_{\overline{\mathfrak{p}}}\left(\gamma_{\overline{\mathfrak{p}}}\right)\right)$.
2.2. Sprung-type factorisation. Let $L_{\alpha, \alpha}, L_{\alpha, \beta}, L_{\beta, \alpha}, L_{\beta, \beta}$ be the two-variable p-adic L-functions constructed in [Loe13] (note that $L_{\alpha, \alpha}$ and $L_{\beta, \beta}$ have also be constructed in [Kim11]). By [Loe13, Theorem 4.7], $L_{\star, \bullet}$ is an element of $D^{\left(v_{p}(\star), v_{p}(\bullet)\right)}\left(G_{p^{\infty}}, F\right)$ for $\star, \bullet \in\{\alpha, \beta\}$. Moreover, if ω is a character on $G_{p^{\infty}}$ of conductor $\mathfrak{p}^{n_{\mathfrak{p}}} \overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}$ with $n_{\mathfrak{p}}, n_{\overline{\mathfrak{p}}} \geq 1$, we have

$$
\begin{align*}
& L_{\alpha, \alpha}(\omega)=\alpha^{-n_{\mathfrak{p}}} \alpha^{-n_{\overline{\mathfrak{p}}}} C_{\omega} \tag{4}\\
& L_{\alpha, \beta}(\omega)=\alpha^{-n_{\mathfrak{p}}} \beta^{-n_{\overline{\mathfrak{p}}}} C_{\omega} \tag{5}\\
& L_{\beta, \alpha}(\omega)=\beta^{-n_{\mathfrak{p}}} \alpha^{-n_{\overline{\mathfrak{p}}}} C_{\omega} \tag{6}\\
& L_{\beta, \beta}(\omega)=\beta^{-n_{\mathfrak{p}}} \beta^{-n_{\bar{p}}} C_{\omega} \tag{7}
\end{align*}
$$

for some $C_{\omega} \in \bar{F}$ that is independent of α and β.
Let M_{p} be the logarithmic matrix given by Theorem 1.5. On replacing γ_{p} by $\gamma_{\mathfrak{p}}$ and $\gamma_{\overline{\mathfrak{p}}}$ respectively, we have two logarithmic matrices $M_{\mathfrak{p}}=\left(\begin{array}{ll}m_{1,1}^{\mathfrak{p}} & m_{1,2}^{\mathfrak{p}} \\ m_{2,1}^{\mathfrak{p}} & m_{2,2}^{\mathfrak{p}}\end{array}\right)$ and $M_{\overline{\mathfrak{p}}}=\left(\begin{array}{ll}m_{1,1}^{\overline{\mathfrak{p}}} & m_{1,2}^{\overline{\mathfrak{p}}} \\ m_{2,1}^{\overline{\mathfrak{p}}} & m_{2,2}^{\bar{p}}\end{array}\right)$ defined over $D^{(1)}\left(\left\langle\gamma_{\mathfrak{p}}\right\rangle, F\right)$ and $D^{(1)}\left(\left\langle\gamma_{\overline{\mathfrak{p}}}\right\rangle, F\right)$ respectively.

Our goal is to prove the following generalisation of [Loe13, Corollary 5.4].
Theorem 2.2. There exist $L_{\#, \#}, L_{b, \#}, L_{\#, b}, L_{b, b} \in D^{(0,0)}\left(G_{p^{\infty}}, F\right)$ such that

$$
\left(\begin{array}{llll}
L_{\alpha, \alpha} & L_{\beta, \alpha} & L_{\alpha, \beta} & L_{\beta, \beta}
\end{array}\right)=\left(\begin{array}{llll}
L_{\#, \#} & L_{b, \#} & L_{\#, b} & L_{b, b}
\end{array}\right) M_{\mathfrak{p}} \otimes M_{\bar{p}} .
$$

We shall prove this theorem in two steps, namely, to show that we can first factor out $M_{\mathfrak{p}}$, then $M_{\bar{p}}$.

Proposition 2.3. For $\star \in\{\alpha, \beta\}$, there exist $L_{\#, \star}, L_{b, \star} \in D^{\left(0, v_{p}(\star)\right)}\left(G_{p^{\infty}}, F\right)$ such that

$$
\left(\begin{array}{ll}
L_{\alpha, \star} & L_{\beta, \star}
\end{array}\right)=\left(\begin{array}{ll}
L_{\#, \star} & L_{b, \star} \tag{8}
\end{array}\right) M_{\mathfrak{p}} .
$$

Proof. We take $\star=\alpha$ (since the proof for the case $\star=\beta$ is identical). Let $\omega_{\mathfrak{p}} \in \Omega_{\mathfrak{p}}$ and $\omega_{\overline{\mathfrak{p}}} \in \Omega_{\overline{\mathfrak{p}}}$ and write $\omega=\omega_{\mathfrak{p}} \omega_{\overline{\mathfrak{p}}}$.

By (4) and (6), $L_{\alpha, \alpha}^{\left(\omega_{\bar{\rightharpoonup}}\right)}$ and $L_{\beta, \alpha}^{\left(\omega_{\bar{p}}\right)}$ is a pair of interpolating functions for f. In particular, $\operatorname{det}\left(M_{\mathfrak{p}}\right)$ divides both

$$
m_{2,2}^{\mathfrak{p}} L_{\alpha, \alpha}^{\left(\omega_{\overline{\mathfrak{p}}}\right)}-m_{2,1}^{\mathfrak{p}} L_{\beta, \alpha}^{\left(\omega_{\overline{\mathfrak{p}}}\right)} \quad \text { and } \quad-m_{1,2}^{\mathfrak{p}} L_{\alpha, \alpha}^{\left(\omega_{\overline{\mathfrak{p}}}\right)}+m_{1,1}^{\mathfrak{p}} L_{\beta, \alpha}^{\left(\omega_{\overline{\mathfrak{p}}}\right)}
$$

over $D^{(1)}\left(G_{\mathfrak{p} \infty}, F\right)$. Therefore, the distributions

$$
m_{2,2}^{\mathfrak{p}} L_{\alpha, \alpha}-m_{2,1}^{\mathfrak{p}} L_{\beta, \alpha} \quad \text { and } \quad-m_{1,2}^{\mathfrak{p}} L_{\alpha, \alpha}+m_{1,1}^{\mathfrak{p}} L_{\beta, \alpha}
$$

vanish at all characters of the form $\omega=\omega_{\mathfrak{p}} \omega_{\overline{\mathfrak{p}}}$. This implies that

$$
\left(m_{2,2}^{\mathfrak{p}} L_{\alpha, \alpha}-m_{2,1}^{\mathfrak{p}} L_{\beta, \alpha}\right)^{\left(\omega_{\mathfrak{p}}\right)}=\left(-m_{1,2}^{\mathfrak{p}} L_{\alpha, \alpha}+m_{1,1}^{\mathfrak{p}} L_{\beta, \alpha}\right)^{\left(\omega_{\mathfrak{p}}\right)}=0
$$

since these two distributions lie inside $D^{(r)}\left(G_{\overline{\mathfrak{p}}} \infty, F^{\prime}\right)$ for some F^{\prime}, with $r<1$, and they vanish at an infinite number of characters for each of their isotypical components. Hence, $\operatorname{det}\left(M_{\mathfrak{p}}\right)$ divides

$$
m_{2,2}^{\mathfrak{p}} L_{\alpha, \alpha}-m_{2,1}^{\mathfrak{p}} L_{\beta, \alpha} \quad \text { and } \quad-m_{1,2}^{\mathfrak{p}} L_{\alpha, \alpha}+m_{1,1}^{\mathfrak{p}} L_{\beta, \alpha}
$$

over $D^{(1, r)}\left(G_{p}, F\right)$. Let

$$
L_{\#, \alpha}:=\frac{m_{2,2}^{\mathfrak{p}} L_{\alpha, \alpha}-m_{2,1}^{\mathfrak{p}} L_{\beta, \alpha}}{\operatorname{det}\left(M_{\mathfrak{p}}\right)} \quad \text { and } \quad L_{b, \alpha}:=\frac{-m_{1,2}^{\mathfrak{p}} L_{\alpha, \alpha}+m_{1,1}^{\mathfrak{p}} L_{\beta, \alpha}}{\operatorname{det}\left(M_{\mathfrak{p}}\right)} .
$$

We may then conclude as in the proof of Lemma 1.4.
Lemma 2.4. Let ω be a character of $G_{p^{\infty}}$ of conductor $\mathfrak{p}^{n_{\mathfrak{p}}} \overline{\mathfrak{p}}^{n_{\overline{\mathfrak{p}}}}$ with $n_{\mathfrak{p}}, n_{\overline{\mathfrak{p}}} \geq 1$. There exist constants D_{ω} and E_{ω} in \bar{F} such that

$$
\begin{array}{rlrl}
\partial_{\mathfrak{p}} L_{\alpha, \alpha}(\omega) & =\alpha^{-n_{\bar{p}}} D_{\omega}, & & \partial_{\mathfrak{p}} L_{\alpha, \beta}(\omega)=\beta^{-n_{\overline{\mathfrak{p}}}} D_{\omega}, \\
\partial_{\mathfrak{p}} L_{\beta, \alpha}(\omega)=\alpha^{-n_{\overline{\mathfrak{p}}}} E_{\omega}, & & \partial_{\mathfrak{p}} L_{\beta, \beta}(\omega)=\beta^{-n_{\overline{\mathfrak{p}}}} E_{\omega} .
\end{array}
$$

Proof. We only prove the result concerning $\partial_{\mathfrak{p}} L_{\alpha, \alpha}$ and $\partial_{\mathfrak{p}} L_{\alpha, \beta}$. Fix an $\omega_{\overline{\mathfrak{p}}} \in \Omega_{\overline{\mathfrak{p}}}$. By (8) and (9), we have

$$
\beta^{n_{\overline{\mathfrak{p}}}} L_{\alpha, \boldsymbol{\beta}}^{\left(\omega_{\overline{\mathfrak{F}}}\right)}\left(\omega_{\mathfrak{p}}\right)=\alpha^{n_{\overline{\mathfrak{p}}}} L_{\alpha, \alpha}^{\left(\omega_{\overline{\mathfrak{p}}}\right)}\left(\omega_{\mathfrak{p}}\right)
$$

for all $\omega_{\mathfrak{p}} \in \Omega_{\mathfrak{p}}$. But $L_{\alpha, \beta}^{\left(\omega_{\overline{\mathfrak{p}}}\right)}, L_{\alpha, \alpha}^{\left(\omega_{\overline{\mathfrak{p}}}\right)} \in D^{(r)}\left(G_{\mathfrak{p} \infty}, F^{\prime}\right)$ for some F^{\prime}. As $r<1$, this implies that

$$
\beta^{n_{\overline{\bar{\rightharpoonup}}}} L_{\alpha, \beta}^{\left(\omega_{\overline{\bar{\rightharpoonup}}}\right)}=\alpha^{n_{\overline{\bar{\rightharpoonup}}}} L_{\alpha, \alpha}^{\left(\omega_{\overline{\bar{\rightharpoonup}}}\right)} .
$$

In particular, their derivatives agree, that is

$$
\beta^{n_{\bar{户}}} \partial_{\mathfrak{p}} L_{\alpha, \beta}^{\left(\omega_{\overline{\bar{F}}}\right)}=\alpha^{n_{\overline{\mathfrak{p}}}} \partial_{\mathfrak{p}} L_{\alpha, \alpha}^{\left(\omega_{\overline{\mathfrak{p}}}\right)} .
$$

But for a general $\mu \in D^{(r, s)}\left(G_{p^{\infty}}, F\right)$, we have

$$
\partial_{\mathfrak{p}}\left(\mu^{\left(\omega_{\overline{\mathfrak{p}}}\right)}\right)\left(\omega_{\mathfrak{p}}\right)=\partial_{\mathfrak{p}} \mu\left(\omega_{\mathfrak{p}} \omega_{\overline{\mathfrak{p}}}\right)
$$

for all $\omega_{\mathfrak{p}} \in \Omega_{\mathfrak{p}}$, hence

$$
\beta^{n_{\overline{\mathfrak{p}}}} \partial_{\mathfrak{p}} L_{\alpha, \beta}(\omega)=\alpha^{n_{\overline{\mathfrak{p}}}} \partial_{\mathfrak{p}} L_{\alpha, \alpha}(\omega)
$$

as required.
Proposition 2.5. For $\star \in\{\#, b\}$, there exist $L_{\star, \#}, L_{\star, b} \in D^{(0,0)}\left(G_{p^{\infty}}, F\right)$ such that

$$
\left(\begin{array}{ll}
L_{\star, \alpha} & L_{\star, \beta}
\end{array}\right)=\left(\begin{array}{ll}
L_{\star,} & L_{\star, b} \tag{9}
\end{array}\right) M_{\bar{p}} .
$$

Proof. Let us prove the proposition for $\star=\#$. Let $\omega_{\mathfrak{p}} \in \Omega_{\mathfrak{p}}$ and $\omega_{\overline{\mathfrak{p}}} \in \Omega_{\overline{\mathfrak{p}}}$ and write $\omega=\omega_{\mathfrak{p}} \omega_{\overline{\mathfrak{p}}}$. Recall that

$$
L_{\#, \bullet} \operatorname{det}\left(M_{\mathfrak{p}}\right)=m_{2,2}^{\mathfrak{p}} L_{\alpha, \bullet}-m_{2,1}^{\mathfrak{p}} L_{\beta, \bullet}
$$

for $\bullet \in\{\alpha, \beta\}$. Since $\operatorname{det}\left(M_{\mathfrak{p}}\right)$ is, up to a non-zero constant in F^{\times}, equal to $\log _{p}(1+X) / X$, we have $\operatorname{det}\left(M_{p}\right)\left(\omega_{\mathfrak{p}}\right)=0$ and $\partial_{\mathfrak{p}} \operatorname{det}\left(M_{\mathfrak{p}}\right)\left(\omega_{\mathfrak{p}}\right) \neq 0$. On taking partial derivatives, Lemma 2.4 together with (4)-(7) imply that

$$
L_{\#, \bullet}(\omega)=(\bullet)^{-n_{\overline{\mathfrak{p}}}} \frac{K_{\omega}}{\partial_{\mathfrak{p}} \operatorname{det}\left(M_{\mathfrak{p}}\right)\left(\omega_{\mathfrak{p}}\right)},
$$

where K_{ω} is the constant

$$
m_{2,2}^{\mathfrak{p}}\left(\omega_{\mathfrak{p}}\right) D_{\omega}+\partial_{\mathfrak{p}} m_{2,2}^{\mathfrak{p}}\left(\omega_{\mathfrak{p}}\right) \alpha^{-n_{\mathfrak{p}}} C_{\omega}-m_{2,1}^{\mathfrak{p}}\left(\omega_{\mathfrak{p}}\right) E_{\omega}-\partial_{\mathfrak{p}} m_{2,1}^{\mathfrak{p}}\left(\omega_{\mathfrak{p}}\right) \beta^{-n_{\mathfrak{p}}} C_{\omega} .
$$

In particular, we see that $L_{\#, \alpha}^{\left(\omega_{\mathfrak{p}}\right)}$ and $L_{\#, \beta}^{\left(\omega_{\mathfrak{p}}\right)}$ is a pair of interpolating functions for f, so we may proceed as in the proof of Proposition 2.3 (with the roles of \mathfrak{p} and $\overline{\mathfrak{p}}$ swapped).

Combining the factorisations (8) and (9), we obtain Theorem 2.2. Note that our proof is very different from that of [Loe13, Corollary 5.4]. In fact, it only relies on the properties of logarithmic matrices as specified in Definition 1.3. Therefore, if we replace M_{p} by any logarithmic matrices, Theorem 2.2 still holds. For example, one may take M_{p} to be the non-canonical logarithmic matrices mentioned in Remark 1.6.

Acknowledgement. The author would like to thank David Loeffler, Henri Darmon and the anonymous referee for their very helpful comments and suggestions.

References

[AV75] Yvette Amice and Jacques Vélu, Distributions p-adiques associées aux séries de Hecke, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), Soc. Math. France, Paris, 1975, pp. 119-131. Astérisque, Nos. 24-25.
[CB98] Robert Coleman and Edixhoven Bas, On the semi-simplicity of the u_{p}-operator on modular forms, Math. Ann. 310 (1998), 119-127.
[Kim11] Byoung Du Kim, Two-variable p-adic L-functions of modular forms for non-ordinary primes, preprint, 2011.
[LLZ10] Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Wach modules and Iwasawa theory for modular forms, Asian J. Math. 14 (2010), no. 4, 475-528.
[Loe13] David Loeffler, p-adic integration on ray class groups and non-ordinary p-adic L functions, arXiv:1304.4042, 2013.
[Pol03] Robert Pollack, On the p-adic L-function of a modular form at a supersingular prime, Duke Math. J. 118 (2003), no. 3, 523-558.
[PR94] Bernadette Perrin-Riou, Théorie d'Iwasawa des représentations p-adiques sur un corps local, Invent. Math. 115 (1994), no. 1, 81-161.
[Spr12a] Florian Sprung, On pairs of p-adic analogues of the conjectures of Birch and SwinnertonDyer, arXiv: 1211.1352, 2012.
[Spr12b] Florian E. Ito Sprung, Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures, J. Number Theory 132 (2012), no. 7, 1483-1506.
[Viš76] M. M. Višik, Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.) 99(141) (1976), no. 2, 248-260, 296.

Department of Mathematics and Statistics, Burnside Hall, McGill University, Montreal QC, Canada H3A 0B9

E-mail address: antonio.lei@mcgill.ca

[^0]: 2000 Mathematics Subject Classification. 11S40, 11S80 (primary).
 The author is supported by a CRM-ISM fellowship.
 ${ }^{1}$ Our results in fact hold for $p=2$. Since the interpolation formulae of p-adic L-functions are slightly different from the other cases, we assume $p \neq 2$ for notational simplicity.

