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Abstract. Let f be a CM modular form and p an odd prime which is inert in the CM field. We construct

two p-adic L-functions for the symmetric square of f , one of which has the same interpolating properties as

the one constructed by Delbourgo-Dabrowski, whereas the second one has a similar interpolating properties
but corresponds to a different eigenvalue of the Frobenius. The symmetry between these two p-adic L-

functions allows us to define the plus and minus p-adic L-functions à la Pollack. We also define the plus and

minus p-Selmer groups analogous to Kobayashi’s Selmer groups. We explain how to relate these two sets of
objects via a main conjecture.

1. Introduction

Let f be a normalised eigen-newform of weight k, level N and character ε. Fix a prime p 6= 2 such that
p - N . In [3] (also in [1] under some additional conditions), even distributions on Z×p are constructed to
interpolate the L-values of the symmetric square of f . More precisely, if the Euler factor of L(E, s) at p is
given by (1− α1(p)p−s)(1− α2(p)p−s), then there exists an admissible distribution µαi(p)2 for i = 1, 2 such
that

(1)

∫
Z×p
θdµαi(p)2 =

p3n(k−1)

αi(p)2nτ(θ−1)
× L(Sym2 f, θ−1, 2k − 2)

(period)

for any non-trivial even Dirichlet character θ of conductor pn where τ(θ−1) denotes the Gauss sum of θ−1.
Since the Euler factor of L(Sym2 f, s) at p is (1− α1(p)2p−s)(1− α2(p)2p−s)(1− ε(p)pk−1−s), we expect

that there should be a distribution µε(p)pk−1 satisfying interpolating properties similar to (1), but with

αi(p)
2 replaced by ε(p)pk−1. In this paper, we construct such a distribution for the case when f is a CM

modular form that is non-ordinary at p. In other words, when the L-function of f coincides with that of a
Grossencharacter φ defined over K and p inerts in K. More precisely, we prove the following theorem in §3
(Theorem 3.20).

Theorem 1.1. If f is as above, then there exist even admissible distributions µ±ε(p)pk−1 such that∫
Z×p
θdµ±ε(p)pk−1 =

p3n(k−1)

(±ε(p)pk−1)
n
τ(θ−1)

× L(Sym2 f, θ−1, 2k − 2)

(period)
.

Note that we have α1(p)2 = α2(p)2 = −ε(p)pk−1 in this case, methods in [3] only produce one distribution,
which agrees with µ−ε(p)pk−1 as given by Theorem 1.1.

The idea of the construction is rather simple. Let Vf be the p-adic representation of GQ associated to f
as constructed by Deligne in [4]. In order to prove Theorem 1.1, we make use of the following observation.
As GQ-representations, we have

Sym2(Vf ) ∼= V1 ⊕ V2

where V1 is an one-dimensional representation associated to some Dirichlet character η twisted by a power
of the cyclotomic character and V2 is a two-dimensional representation associated to the Grossencharacter
φ2. This implies that the L-function of f factorises into

L(Sym2 f, s) = L(φ2, s)L(η, s− k + 1).
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We can therefore make use of an Euler system constructed from elliptic units to interpolate the L-values of φ2

and multiply the resulting distributions with an appropriate twist of the Kubota-Leopoldt p-adic L-function
associated to η, which interpolates the L-values of η.

Because of the symmetry between the two distributions, we show that some plus and minus logarithms
log± of Pollack divide µ+ε(p)pk−1 ± µ−ε(p)pk−1 . This allows us to obtain two bounded measures:

Theorem 1.2. (Theorem 3.25) Let θ be an even Dirichlet character of conductor pn. There exist bounded
p-adic measures µ±(Sym2(Vf )) such that the followings hold.

(a) If n is even, then∫
Z×p
θµ+(Sym2(Vf )) =

(2k − 3)!(k − 1)!p2n(k−1)

θ
(
log+

)
τ(θ−1)2ε(p)n

× L(Sym2 f, θ−1, 2k − 2)

(period)
;

(b) If n is odd, then∫
Z×p
θµ−(Sym2(Vf )) =

(2k − 3)!(k − 1)!p2n(k−1)

θ
(
log−

)
τ(θ−1)2ε(p)n

× L(Sym2 f, θ−1, 2k − 2)

(period)
.

Moreover, µ±(Sym2(Vf )) are uniquely determined by (a) and (b) respectively.

In § 4, we make use of some of the ideas in [6] to show that these measures can be obtained from some
appropriate Coleman maps and define the corresponding plus and minus p-Selmer groups Sel±p (Sym2(Vf )).
On identifying the measures as elements in some Iwasawa algebra Λ⊗Q, we show that the following holds
under some appropriate conditions (see Theorem 4.8 for a precise statement).

Theorem 1.3. The Selmer groups Sel±p (Sym2(Vf )) are Λ-cotorsion and

CharΛ⊗Q
(
Sel±p (Sym2(Vf ))∨

)
=
(
µ±(Sym2(Vf ))

)
.

Finally, in the appendix, we explain how some of the linear algebra results that we use to prove the main
theorems can be easily generalised to general symmetric powers Symm f where m ≥ 2 is an integer.

2. Notation

2.1. Extensions by p power roots of unity. Throughout this paper, p is an odd prime. If K is a field of
characteristic 0, either local or global, GK denotes its absolute Galois group, χ the p-cyclotomic character
on GK and OK the ring of integers of K. We write ι for the complex conjugation in GQ.

For an integer n ≥ 0, we write Kn for the extension K(µpn) where µpn is the set of pnth roots of unity and
K∞ denotes

⋃
n≥1Kn. When K = Q, we write kn = Q(µpn) instead. In particular, we write Qp,n = Qp(µpn).

Let Gn denote the Galois group Gal(Qp,n/Qp) for 0 ≤ n ≤ ∞. Then, G∞ ∼= ∆× Γ where ∆ = G1 is a finite
group of order p− 1 and Γ = Gal(Qp,∞/Qp,1) ∼= Zp. We fix a topological generator γ of Γ.

2.2. Iwasawa algebras and power series. Given a finite extension K of Qp, ΛOK
(G∞) (respectively

ΛOK
(Γ)) denotes the Iwasawa algebra of G∞ (respectively Γ) over OK . We write ΛK(G∞) = ΛOK

(G∞)⊗K
and ΛK(Γ) = ΛOK

(Γ)⊗K. If M is a finitely generated ΛOK
(Γ)-torsion (respectively ΛK(Γ)-torsion) module,

we write CharΛOK
(Γ)(M) (respectively CharΛK(Γ)(M)) for its characteristic ideal.

Given a module M over ΛOK
(G∞) (respectively ΛK(G∞)) and a character δ : ∆→ Z×p , Mδ denotes the

δ-isotypical component of M . For any m ∈M , we write mδ for the projection of m into Mδ. The Pontryagin
dual of M is written as M∨.

Let r ∈ R≥0. We define

Hr =

 ∑
n≥0,σ∈∆

cn,σ · σ ·Xn ∈ Cp[∆][[X]] : sup
n

|cn,σ|p
nr

<∞ ∀σ ∈ ∆


where | · |p is the p-adic norm on Cp such that |p|p = p−1. We write H∞ = ∪r≥0Hr and Hr(G∞) = {f(γ−1) :
f ∈ Hr} for r ∈ R≥0 ∪ {∞}. In other words, the elements of Hr (respectively Hr(G∞)) are the power series
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in X (respectively γ − 1) over Cp[∆] with growth rate O(logrp). If F,G ∈ H∞ or H∞(G∞) are such that
F = O(G) and G = O(F ), we write F ∼ G.

Given a subfield K of Cp, we write Hr,K = Hr ∩K[∆][[X]] and similarly for Hr,K(G∞). In particular,
H0,K(G∞) = ΛK(G∞).

Let n ∈ Z. We define the K-linear map Twn from Hr,K(G∞) to itself to be the map that sends σ to
χ(σ)nσ for all σ ∈ G∞. It is clearly bijective (with inverse Tw−n).

2.3. Crystalline representations. We write Bcris and BdR for the rings of Fontaine and ϕ for the Frobenius
acting on these rings. Recall that there exists an element t ∈ BdR such that ϕ(t) = pt and g · t = χ(g)t for
g ∈ GQp

.

Let V be a p-adic representation of GQp . We denote the Dieudonné module by Dcris(V ) = (Bcris⊗V )GQp .

We say that V is crystalline if V has the same Qp-dimension as Dcris(V ). Fix such a V . If j ∈ Z, Filj Dcris(V )
denotes the jth de Rham filtration of Dcris(V ).

Let T be a lattice of V which is stable under GQp
. Let H1

Iw(T ) denote the inverse limit lim
←
H1(Qp,n, T )

with respect to the corestriction and H1
Iw(V ) = Q⊗H1

Iw(T ). Moreover, if V arises from the restriction of a
p-adic representation of GQ and T is a lattice stable under GQ, we write

H1(T ) = lim
←−
n

H1(Z[µpn , 1/p], T ) and H1(V ) = Q⊗H1(T ).

We have localisation maps

loc : H1(T )→ H1
Iw(T ) and loc : H1(V )→ H1

Iw(V ).

If F is a number field, we define the p-Selmer group of T over F to by

Selp(T/F ) = ker

(
H1(K,T ⊗Qp/Zp)→

∏
v

H1(Fv, T ⊗Qp/Zp)
H1
f (Fv, T ⊗Qp/Zp)

)
where v runs through the places of F .

Let V (j) denote the jth Tate twist of V , i.e. V (j) = V ⊗Qpej where GQp acts on ej via χj . We have

Dcris(V (j)) = t−jDcris(V )⊗ ej .

For any v ∈ Dcris(V ), vj = v⊗ t−jej denotes its image in Dcris(V (j)). We write Twj : H1
Iw(V )→ H1

Iw(V (j))
for the isomorphism defined in [9, § A.4], which depends on a choice of primitive p-power roots of unity.

Finally, we write

exp : Qp,n ⊗ Dcris(V )→ H1(Qp,n, V ) and exp∗ : H1(Qp,n, V )→ Qp,n ⊗ Fil0 Dcris(V )

for Bloch-Kato’s exponential and dual exponential respectively.

2.4. Imaginary quadratic fields. Let K be an imaginary quadratic field with ring of integers O and idele
class group CK . We write εK for the quadratic character associated to K, i.e. the character on GQ which
sends σ to 1 if σ ∈ GK and to −1 otherwise.

A Grossencharacter of K is simply a continuous homomorphism φ : CK → C× with complex L-function

L(φ, s) =
∏
v

(1− φ(v)N(v)−s)−1

where the product runs through the finite places v of K at which φ is unramified, φ(v) is the image of the
uniformiser of Kv under φ and N(v) is the norm of v. Let f be the conductor of φ. We say that η is of type
(m,n) where m,n ∈ Z if the restriction of η to the archimedean part C× of CK is of the form z 7→ zmz̄n.

We write K = ∪K(pnf) where K(a) denotes the ray class field of K modulo a if a is an ideal of O.
If T is a Zp-representation of GK , we write

H1
p∞f(T ) = lim←−

K′
H1(OK′ [1/p], T ) and H1

p∞f(Q⊗Zp T ) = H1
p∞f(T )⊗Zp

Q

where K ′ ranges over all finite extensions of K contained in K(p∞f).
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2.5. Modular forms. Let f =
∑
anq

n be a normalised eigen-newform of weight k ≥ 2, level N and
character ε. We assume that f is a CM modular form, i.e. L(f, s) = L(φ, s) for some Grossencharacter φ of
an imaginary quadratic field K with conductor f. Then, φ is of type (−k + 1, 0). Moreover, p inerts in K if
and only if f is non-ordinary at p. In this case, ap is always 0. Throughout, we fix such a p with p 6= 2.

The coefficient field Ff of f is contained in the field of definition of φ. We write E for the completion of
this field at a fixed prime above p.

We write Vf for the 2-dimensional E-linear representation of GQ associated to f from [4], so we have a
homomorphism

ρf : GQ → GL(Vf ).

Throughout the paper, we assume that the following hypothesis holds.

Hypothesis 2.1. If ε and K are as above, then εK 6= ε.

3. p-adic L-functions

3.1. Grossencharacters over K. We first review some results on Grossencharacters. Let η be a Grossen-
character on GK of conductor f. We fix a finite extension E of Qp such that E contains the image of η.
We write V (η) for the one-dimensional E-linear representation of GK . It is a representation that factors
through Gal(K/K). For an ideal a of O which is prime to pf, the Artin symbol (a,K/K) ∈ Gal(K/K) acts
on V (η) as the multiplication by η(a)−1. We write η̃ : GK → E× for the corresponding character.

We write Ṽη = IndQ
K(V (η)). The canonical homomorphism K ⊗Q(ζp∞)→ K(p∞f) induces a map

Ind : H1
p∞f(V (η))→ H1(Ṽη).

Let γ be a non-zero element of V (η). By [5, §15.5], a system of norm compatible elliptic units in K(pnf)
defines an element zp∞f ∈ H1

p∞f(Zp(1)). We write the image of zp∞f under the composition

H1
p∞f(Zp(1))

γ //H1
p∞f(V (η)(1)) Ind //H1(Ṽη(1))

loc //H1
Iw(Ṽη(1))

Tw−1 //H1
Iw(Ṽη)

as zγ(η) = z(η) and its projection into H1(Qp,n, Ṽη(j)) is denoted by zj,n(η).

Note that the eigenvalues of ι on Ṽη are ±1, each with multiplicity 1. If v ∈ Ṽη, we write v± for the
projection of v into the ±1-eigenspace.

Proposition 3.1. Let η be a Grossencharacter over K of type (−r, 0) with r ≥ 1. Let θ be a character on
Gn and write

κθ : Qp,n ⊗ Fil0 Dcris(Ṽη(1)) → C⊗ Ṽη(1)

x⊗ y 7→
∑
σ∈Gn

θ(σ)σ(x) per(y)

where per is the period map associated to η as defined in [5, §15.8]. Then, we have

κθ ◦ exp∗(z1,n(η)) = L{p}(η̄θ, r) · (γ′)±

where ± = θ(−1) and γ′ denotes the image of γ in Ṽη.

Proof. [5, §15.12]. �

3.2. The symmetric square of a CM modular form. Let f be a modular form as in §2.5. By comparing
the eigenvalues of Frobenii, we see that the representation Vf is isomorphic to Ṽφ = IndQ

K V (φ). Therefore,
Vf admits a basis x, y such that for σ ∈ GQ, the matrix of ρf (σ) with respect to this basis is given by

(2) ρf (σ) =

(
φ̃(σ) 0

0 φ̃(ισι)

)
if σ ∈ GK . Otherwise,

(3) ρf (σ) =

(
0 φ̃(ισ′ι)

φ̃(σ′) 0

)
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where σ = ισ′ with σ′ ∈ GK .

Lemma 3.2. The determinant of ρf is given by

det(ρf )(σ) =

{
φ̃(σ)φ̃(ισι) if σ ∈ GK
−φ̃(σ′)φ̃(ισ′ι) if σ = ισ′ where σ′ ∈ GK .

Proof. This is immediate from (2) and (3). �

Proposition 3.3. As a GQ-representation, Sym2(Vf ) decomposes into

Sym2(Vf ) ∼= V1 ⊕ V2

where ρi : GQ → GL(Vi) is an i-dimensional representation of GQ for i = 1, 2. Moreover,

ρ1
∼= εK · det(ρf ) = εK · ε · χk−1,(4)

ρ2
∼= Ṽφ2 .(5)

Proof. It is clear that x ⊗ x, y ⊗ y, x ⊗ y + y ⊗ x form a basis of Sym2(Vf ). By formulae (2) and (3),
σ · (x ⊗ y + y ⊗ x) is a multiple of x ⊗ y + y ⊗ x for any σ ∈ GQ. Hence, it gives an one-dimensional

sub-representation V1 of Sym2(Vf ). More explicitly, we have

σ · (x⊗ y + y ⊗ x) =

{
φ̃(σ)φ̃(ισι)(x⊗ y + y ⊗ x) if σ ∈ GK
φ̃(σ′)φ̃(ισ′ι)(x⊗ y + y ⊗ x) if σ = ισ′ where σ′ ∈ GK .

Therefore, we deduce (4) from Lemma 3.2.
It is also clear that x⊗ x, y ⊗ y form a basis of a 2-dimensional representation ρ2 : GQ → GL(V2). With

respect to this basis,

ρ2(σ) =

(
φ̃2(σ) 0

0 φ̃2(ισι)

)
if σ ∈ GK . Otherwise, if σ = ισ′ where σ′ ∈ GK , then

ρ2(σ) =

(
0 φ̃2(ισ′ι)

φ̃2(σ′) 0

)
.

Therefore, V2
∼= IndQ

K V (φ2) as required. �

Corollary 3.4. The complex L function admits a factorisation

L(Sym2 f, s) = L(φ2, s)L(εK · ε, s− k + 1).

Proof. The L-function of Sym2 f only have non-trivial Euler factors at q - N . The Euler factors on the two
sides of the equation at q agree by Proposition 3.3, so we are done. �

3.3. The symmetric square as a GQp
-representation. We study the representation Sym2(Vf ) restricted

to GQp
. More specifically, we study Dcris(Sym2 Vf ).

Lemma 3.5. As GQp
-representations, both V1 and V2 are crystalline.

Proof. The functor Dcris is compatible with taking direct sums, so we can identify Dcris(Vi) as a filtered
sub-ϕ-module of Dcris(Vf ) for i = 1, 2. That is,

(6) Dcris(Sym2(Vf )) ∼= Dcris(V1)⊕ Dcris(V2).

Since Sym2(Vf ) is crystalline, so Dcris(Sym2(Vf )) is of dimension 3 over E. Hence, Dcris(Vi) must have
dimension i and Vi is crystalline for i = 1, 2. �
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We now give explicit descriptions of Dcris(V1) and Dcris(V2).
Recall that Dcris(Vf ) is a 2-dimensional E-vector space with Hodge-Tate weights 0 and 1− k. Moreover,

the de Rham filtration is given by

(7) FiliDcris(Vf ) =

 Eω ⊕ Eϕ(ω) if i ≤ 0
Eω if 1 ≤ i ≤ k − 1
0 if i ≥ k

for some ω 6= 0. The action of ϕ on Dcris(Vf ) satisfies ϕ2 = −ε(p)pk−1. Therefore,

(8) FiliDcris(Sym2(Vf )) =


Dcris(Sym2(Vf )) if i ≤ 0
E(ω ⊗ ω)⊕ E(ϕ(ω)⊗ ω + ω ⊗ ϕ(ω)) if 1 ≤ i ≤ k − 1
E(ω ⊗ ω) if k ≤ i ≤ 2k − 2
0 if i ≥ 2k − 1

Since ϕ2(ω) = −ε(p)pk−1ω, we have

ϕ
(
ω ⊗ ϕ(ω) + ϕ(ω)⊗ ω

)
= −ε(p)pk−1

(
ω ⊗ ϕ(ω) + ϕ(ω)⊗ ω

)
.

In particular, ω ⊗ ϕ(ω) + ϕ(ω) ⊗ ω is an eigenvector of ϕ. Therefore, we have a decomposition of filtered
ϕ-modules

Dcris(Sym2(Vf )) =
(
E(ω ⊗ ω)⊕ E(ϕ(ω)⊗ ϕ(ω))

)
⊕
(
E(ω ⊗ ϕ(ω) + ϕ(ω)⊗ ω)

)
.

Proposition 3.6. As filtered ϕ-modules, we have

Dcris(V1) = E(ϕ(ω)⊗ ω + ω ⊗ ϕ(ω)),

Dcris(V2) = E(ω ⊗ ω)⊕ E(ϕ(ω)⊗ ϕ(ω)).

Proof. By (4), ρ1 = εK ·ε ·χk−1. Since p is inert in K, εK(p) = −1. The Hodge-Tate weight of V1 is therefore
1 − k and ϕ acts on Dcris(V1) as multiplication by −ε(p)pk−1. This proves the first equality. The second
equality is then automatic by (6). �

Remark 3.7. Such a decomposition of GQp
-representations is in fact possible for f without CM (see [10,

§2.2]).

Corollary 3.8. The eigenvalues of ϕ on Dcris(V2) are ±ε(p)pk−1.

Proof. By Proposition 3.6, the matrix of ϕ with respect to the basis ω ⊗ ω, ϕ(ω)⊗ ϕ(ω) is(
0 ε(p)2p2k−2

1 0

)
,

hence the result. �

Corollary 3.9. The Hodge-Tate weights of V2 are 0 and 2− 2k.

Proof. This follows from (8) and Proposition 3.6. �

3.4. The Perrin-Riou pairing. By Corollary 3.8, the slope of ϕ on Dcris(V2) is k − 1. Hence, by Corol-
lary 3.9, given any v ∈ Dcris(V2), we have the Perrin-Riou pairing

Lv : H1
Iw(V ∗2 )→ Hk−1,E(G∞)

which satisfies the following properties.

Proposition 3.10. For an integer r ≥ 0, we have

χr (Lv(z)) = r!

[(
1− ϕ−1

p

)
(1− ϕ)−1(vr+1), exp∗(z−r,0)

]
0

.
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Let θ be a character of Gn which does not factor through Gn−1 with n ≥ 1, then

χrθ (Lv(z)) =
r!

τ(θ−1)

∑
σ∈Gn

θ−1(σ)
[
ϕ−n(vr+1), exp∗(zσ−r,n)

]
n

where [, ]n is the pairing

[, ]n : H1(Qp,n, V2(r + 1))×H1(Qp,n, V ∗2 (−r))→ H2(Qp,n, E(1)) ∼= E,

z−r,n denotes the projection of Tw−r(z) into H1(Qp,n, V ∗2 (−r)) and τ(θ−1) denotes the Gauss sum of θ−1.

Proof. See [6, §3.2]. �

Remark 3.11. The assumption on the eigenvalues of ϕ made in [6] are not necessary for our purposes here
because the Perrin-Riou pairings can be defined by applying 1− ϕ to the (ϕ,G∞)-module of V ∗2 (see [7] and
[5, §16.4]).

We fix a non-zero element ω̄ ∈ Fil−1 Dcris(V
∗
2 (1)) and write

per(ω̄) = Ω+(γ′)+ + Ω−(γ′)−

where Ω± ∈ C× and γ′ is as in the statement of Proposition 3.1 for some fixed γ.

Definition 3.12. Under the choices made above, we define v± ∈ Dcris(V2) by

v± =
1

[ϕ(ω)⊗ ϕ(ω), ω̄]

(
± ε(p)pk−1ω ⊗ ω + ϕ(ω)⊗ ϕ(ω)

)
.

Lemma 3.13. The elements v± satisfy:

(a) Both v± are eigenvalues of ϕ with ϕ(v±) = ±ε(p)pk−1v±;
(b) For any x ∈ Fil0 Dcris(V

∗
2 (−r)) and an integer r such that 0 ≤ r ≤ 2k − 3, we have

[v+
r+1, x] = [v−r+1, x]

where [, ] denotes the pairing

[, ] : Dcris(V2(r + 1))× Dcris(V
∗
2 (−r))→ Dcris(E(1)) = E · t−1e1.

Proof. (a) is easy to check using the matrix given in the proof of Corollary 3.8 (or by direct calculations).
By Corollary 3.9, the Hodge-Tate weights of V ∗2 are 0 and 2k − 2. Hence, Fil0 Dcris(V

∗
2 (−r)) is one-

dimensional with basis ω̄−r−1 for 0 ≤ r ≤ 2k − 3. Since (ω ⊗ ω)r+1 ∈ Fil0 Dcris(V2(r + 1)), we have
[(ω ⊗ ω)r+1, ω̄−r−1] = 0. Hence,

[v+
r+1, ω̄−r−1] = [v−r+1, ω̄−r−1] = 1,

which implies (b). �

Note that V ∗2
∼= Ṽφ̄2(2k − 2). This enables us to make the following definition of p-adic L-functions

associated to φ2.

Definition 3.14. On taking η = φ̄2 in §3.1, we define

L±ε(p)pk−1(φ2) = Lv±
(
Tw2k−2

(
z(φ̄2)

))
∈ Hk−1,E(G∞).

Lemma 3.15. Let θ be a character of Gn which does not factor through Gn−1 with n ≥ 1 and write
δ = θ(−1), then

χ2k−3θ
(
Lα(φ2)

)
=

(2k − 3)!p(2k−2)n

τ(θ−1)αn
× L(φ2θ−1, 2k − 2)

Ωδ

where α = ±ε(p)pk−1.
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Proof. We have

χ2k−3θ
(
L±ε(p)pk−1(φ2)

)
= χ2k−3θ

(
Lv±

(
Tw2k−2

(
z(φ̄2)

)) )
=

(2k − 3)!

τ(θ−1)

∑
σ∈Gn

θ−1(σ)
[
ϕ−n(v±2k−2), exp∗(z1,n(φ̄2)σ)

]
n

=
(2k − 3)!

τ(θ−1)

[(
±ε(p)pk−1 × p−2k+2

)−n
v±2k−2,

∑
σ∈Gn

θ−1(σ) exp∗(z1,n(φ̄2)σ)

]
n

=
(2k − 3)!p(2k−2)n

τ(θ−1) (±ε(p)pk−1)
n ×

L(φ2θ−1, 2k − 2)

Ωδ

where the second equality follows from Proposition 3.10, the third follows from Lemma 3.13(a) and the last
equality is a consequence of Proposition 3.1 and the fact that p divides the conductor of θ. �

Lemma 3.16. We have

χ2k−3
(
L±ε(p)pk−1(φ2)

)
=
(

1− p−1 + (1− ε(p)−2p2k−3)(±ε(p)p1−k)
)
× L(φ2, 2k − 2)

Ω+
.

Proof. Since ϕ2 = ε(p)2p2−2k on Dcris(V2(2k − 2)), we have(
1− ϕ−1

p

)
(1− ϕ)−1

= (1− ε(p)−2p2k−3ϕ)
1 + ϕ

1− ε(p)2p2−2k

=
1− p−1 + (1− ε(p)−2p2k−3)ϕ

1− ε(p)2p2−2k
.

Therefore, similarly to the proof of Lemma 3.15, we have

χ2k−3
(
L±ε(p)pk−1(φ2)

)
= χ2k−3

(
Lv±

(
Tw2k−2

(
z(φ̄2)

)) )
= (2k − 3)!

[
1− p−1 + (1− ε(p)−2p2k−3)ϕ

1− ε(p)2p2−2k

(
v±2k−2

)
, exp∗(z1,0(φ̄2))

]
0

= (2k − 3)!

[
1− p−1 + (1− ε(p)−2p2k−3)(±ε(p)p1−k)

1− ε(p)2p2−2k
· v±2k−2, exp∗(z1,0(φ̄2))

]
0

=
1− p−1 + (1− ε(p)−2p2k−3)(±ε(p)p1−k)

1− ε(p)2p2−2k
×
L{p}(φ

2, 2k − 2)

Ω+

=
(

1− p−1 + (1− ε(p)−2p2k−3)(±ε(p)p1−k)
)
× L(φ2, 2k − 2)

Ω+
.

�

Remark 3.17. Consider the p-adic L-function L+ε(p)pk−1(φ2). The first factor on the right-hand side of the
equation in the statement of Lemma 3.16 vanishes if and only if k = 2 and ε(p) = 1 (e.g. when f corresponds
to an elliptic curve over Q). This recovers the trivial zero result in [10].
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3.5. p-adic L-functions of the symmetric square. Let us first recall the following result of Kubota and
Leopoldt.

Theorem 3.18. If η is a non-trivial Dirichlet character of conductor prime to p, there exists a bounded
p-adic measure Lp(η) ∈ H0,E(G∞) where E is some finite extension of Qp which contains the image of η
such that

χrθ(Lp(η)) =
(r + 1)!pn(r+1)

(2πi)r+1τ(θ−1)
× L(ηθ−1, r + 1);

χr(Lp(η)) =
(r + 1)!

(2πi)r+1
L(η, r + 1).

for any integer r ≥ 0 and Dirichlet character θ of conductor pn such that χr+1θ(−1) = η(−1).

Since we assume that Hypothesis 2.1 holds, we may take η = εK · ε in Theorem 3.18. This enables us to
give the following definition.

Definition 3.19. For α = ±ε(p)pk−1 we define

Lα
(
Sym2(Vf )

)
= Lα(φ2)× Tw−k+1 (Lp(εK · ε)) .

For the rest of this section, unless otherwise stated, θ denotes an even character on Gn which does not
factor through Gn−1 with n ≥ 1.

Theorem 3.20. Both L±ε(p)pk−1

(
Sym2(Vf )

)
lie inside Hk−1,E(G∞) and admit the following interpolating

properties:

χ2k−3θ
(
Lα
(
Sym2(Vf )

) )
=

(2k − 3)!(k − 1)!p3n(k−1)

τ(θ−1)2αn
× L(Sym2 f, θ−1, 2k − 2)

(2πi)k−1Ω+
;

χ2k−3
(
Lα
(
Sym2(Vf )

) )
= (2k − 3)!(k − 1)!

(
1− 1

p
+ α

(
p−2k+2 − 1

pε(p)2

))
× L(Sym2 f, 2k − 2)

(2πi)k−1Ω+

where α = ±ε(p)pk−1.

Proof. By definition, Lα(φ2) ∈ Hk−1,E(G∞) and Lp(εK · ε) ∈ H0,E(G∞) which implies the first part of the
theorem.

Since det(Vf ) = εχk−1 and ρf is odd, we have εχk−1(−1) = −1. But εK(−1) = −1 and θ(−1) = 1, so
χk−1θ(−1) = εKε(−1) and we can apply Theorem 3.18 and Lemma 3.15 as follows:

χ2k−3θ
(
Lα
(
Sym2(Vf )

) )
= χ2k−3θ

(
Lα(φ2)

)
× χk−2θ

(
Lp(εK · ε)

)
=

(2k − 3)!p(2k−2)n

τ(θ−1)αn
× L(φ2θ, 2k − 2)

Ω+
× (k − 1)!pn(k−1)

(2πi)k−1τ(θ−1)
× L(εk · ε · θ−1, k − 1)

=
(2k − 3)!(k − 1)!p3n(k−1)

τ(θ−1)2αn
× L(Sym2 f, θ−1, 2k − 2)

(2πi)k−1Ω+
,

where the last equality follows from Corollary 3.4. This gives the first interpolating formula and the second
one can be deduced in the same way. �

Lemma 3.21. Let η be an even character on ∆, then Lη±ε(p)pk−1

(
Sym2(Vf )

)
6= 0.

Proof. We have L(Sym2(Vf ), η, 2k − 2) 6= 0 because the critical strip of Sym2(Vf ) is k − 1 < Re(s) < k.
Therefore, we are done by the interpolating properties given by Theorem 3.20. �
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3.6. Pollack’s plus and minus splittings. As in [11], we define

log+(γ) =

2k−3∏
r=0

∞∏
n=1

Φ2n(χ(γ)−rγ)

p
,

log−(γ) =

2k−3∏
r=0

∞∏
n=1

Φ2n−1(χ(γ)−rγ)

p
,

where Φm denotes the pmth cyclotomic polynomial. Then, log±(γ) ∼ logk−1.

Lemma 3.22. For an integer r such that 0 ≤ r ≤ 2k − 3 and a character θ of Gn which does not factor
through Gn−1 with n ≥ 1, then

χrθ
(
L+ε(p)pk−1(φ2)

)
= (−1)nχrθ

(
L−ε(p)pk−1(φ2)

)
.

Proof. This follows from the same calculations as in the proof of Lemma 3.15 thanks to Lemma 3.13(b). �

Corollary 3.23. We have divisibilities

log+(γ) | L+ε(p)pk−1(φ2) + L−ε(p)pk−1(φ2);

log−(γ) | L+ε(p)pk−1(φ2)− L−ε(p)pk−1(φ2).

Similarly,

log+(γ) | L+ε(p)pk−1

(
Sym2(Vf )

)
+ L−ε(p)pk−1

(
Sym2(Vf )

)
;

log−(γ) | L+ε(p)pk−1

(
Sym2(Vf )

)
− L−ε(p)pk−1

(
Sym2(Vf )

)
.

Proof. The first set of divisibilities follows from Lemma 3.22. The second set is then immediate by definition.
�

This allows us to define the following.

Definition 3.24. We define the plus and minus p-adic L-functions for Sym2(Vf ) by

L+
p (Sym2(Vf )) =

(
L+ε(p)pk−1

(
Sym2(Vf )

)
+ L−ε(p)pk−1

(
Sym2(Vf )

) )
/2 log+(γ);

L−p (Sym2(Vf )) =
(
L+ε(p)pk−1

(
Sym2(Vf )

)
− L−ε(p)pk−1

(
Sym2(Vf )

) )
/2 log−(γ).

Similarly, we define the plus and minus p-adic L-functions for V2 by

L+
p (φ2) =

(
L+ε(p)pk−1

(
φ2
)

+ L−ε(p)pk−1

(
φ2
) )
/2 log+(γ);

L−p (φ2) =
(
L+ε(p)pk−1

(
φ2
)
− L−ε(p)pk−1

(
φ2
) )
/2 log−(γ).

It is immediate that we have

(9) L±p
(
Sym2(Vf )

)
= L±p (φ2)× Tw−k+1 (Lp(εK · ε)) .

Theorem 3.25. Both L±p (Sym2(Vf )) are elements of ΛE(G∞) and admit the following interpolating prop-
erties:

(a) If n is even, then

χ2k−3θ
(
L+
p (Sym2(Vf ))

)
=

(2k − 3)!(k − 1)!p2n(k−1)

log+ (χ2k−3θ(γ)) τ(θ−1)2ε(p)n
× L(Sym2 f, θ−1, 2k − 2)

(2πi)k−1Ω+
,

χ2k−3
(
L+
p (Sym2(Vf ))

)
=

(2k − 3)!(k − 1)!
(
1− p−1

)
log+ (χ2k−3(γ))

× L(Sym2 f, 2k − 2)

(2πi)k−1Ω+
;
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(b) If n is odd, then

χ2k−3θ
(
L−p (Sym2(Vf ))

)
=

(2k − 3)!(k − 1)!p2n(k−1)

log− (χ2k−3θ(γ)) τ(θ−1)2ε(p)n
× L(Sym2 f, θ−1, 2k − 2)

(2πi)k−1Ω+
,

χ2k−3
(
L−p (Sym2(Vf ))

)
=

(2k − 3)!(k − 1)!
(
ε(p)p−k+1 − ε(p)−1pk−2

)
log− (χ2k−3(γ))

× L(Sym2 f, 2k − 2)

(2πi)k−1Ω+
.

Moreover, L±p (Sym2(Vf )) are uniquely determined by (a) and (b) respectively.

Proof. By the first part of Theorem 3.20, L±ε(p)pk−1

(
Sym2(Vf )

)
are both elements of Hk−1,E(G∞). But

log±(γ) ∼ logk−1, so the quotients above are in H0,E(G∞) = ΛE(G∞).
The interpolating formulae in (a) and (b) follow from those given in Theorem 3.20.
Finally, since L±p (Sym2(Vf )) ∈ ΛE(G∞), they are uniquely determined by their values at an infinite

number of characters, hence the last part of the theorem. �

Lemma 3.26. Let η be an even character on ∆, then L±,ηp

(
Sym2(Vf )

)
6= 0.

Proof. The same as the proof of Lemma 3.21. �

Remark 3.27. Analogues of Theorem 3.25 and Lemma 3.26 for L±p (φ2) can be deduced in the same way.

Remark 3.28. A conjectural generalisation of Pollack’s plus and minus splittings of p-adic L-functions for
motives has been formulated in [2]. Theorem 3.25 gives an affirmative answer to Conjecture 2 of op. cit. for
the special case when the motive corresponds to the symmetric square of a CM modular form.

4. Selmer groups

In this section, we define the plus and minus p-Selmer groups for Sym2(Vf ) and relate them to the p-adic

L-functions L±p
(
Sym2(Vf )

)
defined above. By the decomposition given by Proposition 3.3, we only need to

define their counterparts for V2 = Ṽφ2 because the Selmer group of V1 is relatively well-understood. The
GQ-representation V2 behaves in exactly the same way as Vf ′ where f ′ is some CM modular form of weight
2k − 1, so many of the results on V2 below can be proved using the arguments given in [6]. Therefore, we
only outline the proofs without giving all the details here.

4.1. Coleman maps and Selmer groups. As in [6, 7], we define plus and minus Selmer groups using the
kernels of some Coleman maps.

Proposition 4.1. If z ∈ H1
Iw(V ∗2 ), then

log+(γ) | Lϕ(ω)⊗ϕ(ω)(z),

log−(γ) | Lω⊗ω(z).

Proof. As in [6, Proposition 3.14], this can be proved using Proposition 3.10. �

Therefore, as in [6], we may define ΛE(G∞)-homomorphisms

Col+ : H1
Iw(V ∗2 ) → ΛE(G∞)

z 7→ 1

2[ϕ(ω)⊗ ϕ(ω), ω̄] log+(γ)
Lϕ(ω)⊗ϕ(ω)(z);

Col− : H1
Iw(V ∗2 ) → ΛE(G∞)

z 7→ 1

2[ϕ(ω)⊗ ϕ(ω), ω̄] log−(γ)
Lω⊗ω(z).

Then, it is clear by definition that Col±
(
Tw2k−2

(
z(φ̄2)

))
= L±p (φ2).
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We now fix an OE-lattice T of V (φ) which is stable under GQ, it then gives rise to natural OE-lattices

Tf = IndQ
K(T ) and Sym2 Tf in Vf = Ṽφ and Sym2(Vf ) respectively, both of which are again stable under

GQ. As p 6= 2, we have

Sym2 Tf ∼= T1 ⊕ T2 and Sym2 Vf/Tf ∼= V1/T1 ⊕ V2/T2

for some OE-lattice Ti inside Vi for i = 1, 2.
Write H1

±(Qp,n, T ∗2 ) for the projection of ker(Col±) into H1(Qp,n, T ∗2 ) and define H1(Qp,n, V2/T2(1))± to
be the exact annihilator of H1

±(Qp,n, T ∗2 ) under the Pontryagin duality

H1(Qp,n, T ∗2 )×H1(Qp,n, V2/T2(1))→ Qp/Zp.

Let F be a number field. Then the p-Selmer group of Sym2 Tf (1) decomposes into those of T1(1) and
T2(1):

Selp(Sym2 Tf (1)/F ) = Selp(T1(1)/F )⊕ Selp(T2(1)/F ).

We define the plus/minus Selmer groups over kn = Q(µpn) by

Sel±p (T2(1)/kn) = ker

(
Selp(T2(1)/kn)→ H1(Qp,n, V2/T2(1))

H1
f (Qp,n, V2/T2(1))±

)
,

Sel±p (Sym2 Tf (1)/kn) = Selp(T1(1)/kn)⊕ Sel±p (T2(1)/kn)

and let

Sel±p (T2(1)/k∞) = lim
→

Sel±p (T2(1)/kn) and Sel±p (Sym2 Tf (1)/k∞) = lim
→

Sel±p (Sym2 Tf (1)/kn).

4.2. Description of the kernels. In this section, we give a more explicit description of the groups
H1
f (Qp,n, V2/T2(1))± under the following additional assumption.

Hypothesis 4.2. Either p− 1 - k − 1 or ε 6= 1.

In [6, §4], one of the key ingredients to give an explicit description of H1
f (Qp,n, Vf/Tf (1))± is the fact that

(Vf/Tf (j))
GQp,n = 0 under some appropriate assumptions. We show below that we get an analogue of such

description under Hypothesis 4.2.

Lemma 4.3. If Hypothesis 4.2 holds, then (V2/T2(j))
GQp,n = 0 for all j ∈ Z and n ∈ Z≥0.

Proof. Let q - N be a prime which is inert in K. Then, by the second half of the proof of Proposition 3.3,
we see that the eigenvalues of the q-Frobenius on V2(j) are ±ε(q)χj(q)qk−1. Therefore, as in [6, proof of
Lemma 4.4], it is enough to show that there exists some q such that

±ε(q)χj(q)qk−1 6≡ 1 mod p.

If either p− 1 - k − 1 or ε(q) 6= 1, we can find such a q by Dirichlet’s theorem, so we are done. �

Corollary 4.4. If Hypothesis 4.2 holds, then the restriction map H1(Qp,m, T2(1)) → H1(Qp,n, T2(1)) is
injective for any integers n ≥ m ≥ 0. On identifying the former as a subgroup of the latter, we have

H1
f (Qp,n, V2/T2(1))± = H1

f (Qp,n, T2(1))± ⊗ E/OE .

Here

H1
f (Qp,n, T2(1))± =

{
x ∈ H1

f (Qp,n, T2(1)) : corn/m+1(x) ∈ H1
f (Qp,m, T2(1))∀m ∈ S±n

}
where cor denotes the corestriction map and

S+
n = {m ∈ [0,m− 1] : m even},
S−n = {m ∈ [0,m− 1] : m odd}.

Proof. These can be proved in exactly the same way as their counterparts in [6, §4] using Lemma 4.3. �
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4.3. Main conjectures.

Theorem 4.5. Let θ be a character on ∆ and r ≥ 0 an integer such that χr+1θ(−1) = η(−1). Then

Selp (Zp(η)(r + 1))
θ

is ΛE(Γ)-cotorsion and

CharΛE(Γ)

(
Selp (Zp(η)(r + 1))

∨,θ
)

=
(
Tw−r L

θ
p(η)

)
.

Proof. For any ΛE(G∞)-module, M∨(r) = M(−r)∨. If M is a ΛE(Γ)-torsion module, we have Char(M(r)) =
Twr(Char(M)). Therefore, the result is just a rewrite of the Iwasawa main conjecture, as proved by Mazur-
Wiles [8]. �

Corollary 4.6. Let η be an even character on ∆. Then

CharΛE(Γ) (Selp(T1(1)/k∞)∨,η) = (Tw−k+1 L
η
p(εK · ε)).

Proof. We may apply Theorem 4.5 to εK · ε with r = k − 1. �

Proposition 4.7. Let δ = ± and let η be a character on ∆ such that η = 1 if δ = −. Then, Selδp(T2(1)/k∞)θ

is ΛE(Γ)-cotorsion and

CharΛE(Γ)

(
Selδp(T2(1)/k∞)∨,η

)
=
(
Lδ,ηp (φ2)

)
.

Proof. This follows from the same argument as in [12], which has been generalised for CM modular forms
in [6, §7]. It relies on the main conjecture for K as proved in [13]. �

Theorem 4.8. Let η be character on ∆ as in the statement of Proposition 4.7. Then Sel±p (Sym2(Vf )/k∞)η

is ΛE(Γ)-cotorsion and

CharΛE(Γ)

(
Sel±p (Sym2(Vf )/k∞)∨,η

)
=
(
L±,ηp (Sym2(Vf ))

)
.

Proof. Recall that

Sel±p (Sym2 Tf (1)/k∞) = Selp(T1(1)/k∞)⊕ Sel±p (T2(1)/k∞)

by definition, so

Sel±p (Sym2 Tf (1)/k∞)∨,η = Selp(T1(1)/k∞)∨,η ⊕ Sel±p (T2(1)/k∞)∨,η.

But we have

L±,ηp

(
Sym2(Vf )

)
= L±,ηp (φ2)× Tw−k+1

(
Lηp(εK · ε)

)
by (9). Therefore, the theorem follows from Corollary 4.6 and Proposition 4.7 because

Char(M1 ⊕M2) = Char(M1) Char(M2)

for any torsion modules M1 and M2. �

5. Appendix

In this section, we fix an integer m ≥ 2. We prove an analogue of Proposition 3.3.

Proposition 5.1. If m is even, we have a decomposition of GQ-representations

Symm Vf ∼=
m/2−1⊕
i=0

(
Ṽφm−2i ⊗ (εK det ρf )

i
)
⊕ (εK det ρf )

m/2
.

If m is odd, then

Symm Vf ∼=
(m−1)/2⊕
i=0

(
Ṽφm−2i ⊗ (εK det ρf )

i
)
.
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Proof. We only give the proof for the case when m is even since the other case can be proved in a similar
way. Let x, y be the basis of Vf given as in §3.2. For an integer r such that 0 ≤ r ≤ m, we write xr for the
element in V ⊗mf given by ∑

a1 ⊗ a2 ⊗ · · · ⊗ am

where the sum runs over ai ∈ {x, y} with #{i : ai = x} = r. Then, x0, . . . , xm give a basis of Symm Vf .
If σ ∈ GK , we have

σ(xr) = φ̃r(σ)φ̃m−r(ισι)xr

by (2). If σ = ισ′ with σ′ ∈ GK , then

σ(xr) = φ̃r(σ′)φ̃m−r(ισ′ι)xm−r

by (3). Therefore, xr and xm−r generate a subrepresentation of Symm Vf , which we denote by ρr : GQ →
GL(Vr) where 0 ≤ r ≤ m/2. Note that Vr is 2-dimensional if r < m/2 and Vm/2 is 1-dimensional. We have
a decomposition

Symm Vf ∼= ⊕m/2r=0Vr.

For r < m/2, the matrix of σ ∈ GK respect to the basis xm−r, xr is(
φ̃m−r(σ)φ̃r(ισι) 0

0 φ̃r(σ)φ̃m−r(ισι)

)
= φ̃r(σισι)

(
φ̃m−2r(σ) 0

0 φ̃m−2r(ισι)

)
,

whereas that of σ = ισ′ with σ′ ∈ GK is given by(
0 φ̃r(σ′)φ̃m−r(ισ′ι)

φ̃m−r(σ′)φ̃r(ισ′ι) 0

)
= φ̃r(σ′ισ′ι)

(
0 φ̃m−2r(ισ′ι)

φ̃m−2r(σ′) 0

)
.

Therefore, we see that ρr ∼= IndQ
K(V (φm−2r)) · (εK det ρf )r by Lemma 3.2.

Finally, for r = m/2, we have

σ(xm/2) =

{
φ̃m/2(σισι)xm/2 if σ ∈ GK
φ̃m/2(σ′ισ′ι)xm/2 if σ = ισ′ where σ′ ∈ GK .

Hence, Vm/2 = (εK det ρf )m/2 again by Lemma 3.2. This finishes the proof. �

Corollary 5.2. The complex L-function admits a factorisation

L(Symm f, s) =

{(∏m/2−1
i=0 L

(
φm−2i, (εKε)

i, s− i(k − 1)
))
L
(
(εKε)

m/2, s−m/2(k − 1)
)

if m is even,∏(m−1)/2
i=0 L

(
φm−2i, (εKε)

i, s− i(k − 1)
)

otherwise.

Proof. This can be proved in the same way as Corollary 3.4. �

Remark 5.3. For 0 ≤ i ≤ b(m− 1)/2c, we may obtain a p-adic L-function that interpolates the L-values of
φm−2i at (m−2i)(k−1) using Proposition 3.1. However, when m > 2, their product does not interpolate the
L-values of Symm f . We would need p-adic L-functions that interpolate the L-values of φm−2i at (m−i)(k−1)
instead.
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