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ABSTRACT

We generalise works of Kobayashi to give a formulation of the Iwasawa main conjecture
for modular forms at supersingular primes. In particular, we give analogous definitions
of the plus and minus Coleman maps for normalised new forms of arbitrary weights and
relate Pollack’s p-adic L-functions to the plus and minus Selmer groups. In addition,
by generalising works of Pollack and Rubin on CM elliptic curves, we prove the “main
conjecture” for CM modular forms.

1. Introduction

The Taniyama-Shimura conjecture, proved by Wiles et al, asserts that elliptic curves over Q corre-
spond to modular forms of weight 2. Therefore, it is natural to ask which results on elliptic curves
can be generalised to modular forms of higher weights. In this paper, we discuss how this can be
done for some recent results on supersingular primes.

Let p be an odd prime and let G, be the Galois group of the extension k., of Q by p power roots
of unity. We denote by A(G ) the Iwasawa algebra of G, over Z,,. If A denotes the torsion subgroup
of G and 7 is a fixed topological generator of the Z,-part of G, then A(Goo) = Zp[Al[[y — 1]].

Let f = > a,q™ be a normalised eigen-newform of weight k > 2, level N and character e. For
notational simplicity, we assume a, € Z throughout the introduction. We fix p so that p { N. Kato
[Kat04] has formulated a main conjecture relating an Euler system (to which we refer as Kato zeta
element) to some cohomological group over ko, (see Section 3.3 for a brief review).

If o is a root of X2 —a,X + €(p)p*~! such that v,(a) < k — 1 where v, is the p-adic valuation of
C, with vy(p) = 1, then there exists a p-adic L-function L, , interpolating complex L-values of f.
When f is ordinary at p (i.e. ap is a p-adic unit) and « is the unique unit root of the quadratic above,
Ly lies inside Q ® A(G«) and the p-Selmer group Sel,(f/koo) of f over ko is A(Goo)-torsion, i.e.
its Pontryagin dual

Sel,(f/koo)" = Homets (Sely(f /koo ) Qp/Zy)
is A(Goo)-torsion. If 6 is a character on A, the #-isotypical component of Sel,(f/kso)” is Zp|[[y — 1]]-
torsion. We can associate to it a characteristic ideal. Kato’s main conjecture is equivalent to asserting

that this ideal is generated by the #-component of L, (written as Lf;,a), i.e. there is a pseudo-
isomorphism (a homomorphism with finite kernel and cokernel)

Sel,,(f /koo) ’—>HZ (z;)

for some z; € Zp[[y — 1]] such that z1-- -z, = vaa
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When f is supersingular at p (i.e. plap), the p-adic L-functions of f as given above are not in
Q ® A(Gw) and Sely(f/koo) is not A(G)-cotorsion (see Section 6.3.1). Therefore, Kato’s main
conjecture cannot be reformulated in the same way as the oridnary case.

In recent years, much progress has been made on supersingular primes. When a, = 0, Pollack
[Pol03] has defined the plus and minus p-adic L-functions LjE which have bounded coefficients.
In [Kob03], again assuming a, = 0, Kobayashi defined the plus and minus Selmer groups SeljE
for the case when f corresponds to an elliptic curve £ over Q and proved that Seli(é' /koo) are
A(Go)-cotorsion. It is then possible to reformulate Kato’s main conjecture as follows.

CONJECTURE 1.1. Let 0 be a character on A. Under the notation above, the characteristic ideal of
Sel (€ /koo) V¥ is generated by L

One inclusion of conjecture 1.1, namely L;t " does lie inside the said characteristic ideal, follows
from that of Kato’s main conjecture under some assumptions. For the CM case, the other inclusion
has been proved by Pollack and Rubin in [PR04], using the theory of imaginary quadratic fields
and elliptic units.

We now explain how Sel;IE (€/kso) is defined. Let pu,n be the set of p™th roots of unity. The idea of
Kobayashi is to define subgroups £*(Q,(upn)) of E(Qp(ppn)) which can be identified with its image
in HY(Qp(ppn ), E[p™]) under the Kummer map. The £-Selmer groups over Q(p,n) is defined to be

1 (e o]
Self(c‘:/(@(ﬂp")) = ker <Se1p(5/(@(ﬂp")) - 55@?655:;))5&/2) .

Then, SelF (€ /koo) is defined to be the direct limit of Sl (£/Q(syn)).

On the one hand, £[p>°] gives a p-adic representation of Gal(Q/Q) and one can define analogous
representations for arbitrary modular forms (see [Del69] for details). On the other hand, the Kummer
image of £(Qp(ipn)) can be identified with the so-called finite cohomology subgroup H} defined

in [BK90]. Therefore, we can give a definition of Sel®(f/kso) analogously for any modular forms
without much difficulty.

To show that Sel;t(é' /koo) is A(Goo)-cotorsion, Kobayashi constructed the +-Coleman maps
Col™ : lim H(Qp(ppn), Tp(€)) — A(Goc)

where T},(£) denotes the Tate module of £ at p. In particular, Col* send the Kato zeta element
from [Kat04] to Li respectively. By applying the Poitou-Tate exact sequence, he then showed that
the Pontryagin dual of Seli (€/kso) is killed by Li # 0, hence A(G)-cotorsion.

We follow this strategy to show that Sellf f / koo) are A(Goo)-cotorsion for f of any weights
k > 2. Although the Coleman maps in [Kob03] are defined using formal groups, they can in fact be
obtained from Perrin-Riou’s exponential map defined in [PR94]. We make use of this and observe
that there is a divisibility phenomenon, similar to that used in the construction of L;t in [Pol03].
This enables us to construct analogous +-Coleman maps for general f. Although we do not need any
restrictions on p to define them, we assume that p+1{ k—1 in order to describe their kernels, which
are related to the local conditions in the definition of Sel;t. We then formulate a main conjecture as
follows.

CONJECTURE 1.2. Let f and 6 be as above. There exists n* € 7 such that the characteristic ideal
of Selj(f/koo)v’e is generated by p”iL;)t’e.

As in the case of elliptic curves, Conjecture 1.2 is equivalent to Kato’s main conjecture and one
inclusion holds.

It has to be pointed out that we are assuming a, = 0 as in [Kob03] and [Pol03]. Since |a,| <
op(k—1)/2 (due to Deligne), a, is always zero when p > 3 when f corresponds to an elliptic curve.
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When k£ > 2, the assumption is much stronger, although if f is a CM modular form, a, = 0 for
any supersingular primes p (see Section 7). More recently, Sprung [Spr09] has generalised works of
Kobayashi to the case a,, # 0 for elliptic curves over Q. It would be desirable to know whether this
can be done for modular forms of higher weights as well.

The layout of this paper is as follows. We fix some notation and review some basic properties
in Section 2. In Section 3, we first review some of the main results which we need from [PR94]
and [Kat04]. We then construct the £-Coleman maps. The kernels of these maps are worked out
explicitly in Section 4 and their images are described in Section 5. Following [Kob03], we define
Sel;,t in Section 6. We show that they are A(G)-cotorsion which enables us to formulate the “main
conjecture” for which one inclusion of the conjecture is shown. Finally, in Section 7, the other
inclusion is proved in the case of CM modular forms over Q, following the strategy of [PR04].
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2. Background

In this section, we fix some notation which is used throughout the paper. We also state some basic
properties of some of the objects which we study.

2.1 Extensions by p power roots of unity

Throughout this paper, p is an odd prime. If K is a field of characteristic 0, either local or global,
G denotes its absolute Galois group, x the p-cyclotomic character on G and Ok the ring of
integers of K. For an integer n > 0, we write K,, for the extension K (j,n) where i,n is the set of
p"th roots of unity and K, denotes Up>1K,. The Z,-cyclotomic extension of K is denoted by K.
and K™ denotes the p"-subextension inside K.

In particular, we write Q= Q,(ppn). For n > m, we write Tr,, /,,, for the trace map from Q,,
to Qp,m. For each n, we fix a primitive p"th root of unity such that Cg = (pn-1. Let G, denote the
Galois group Gal(Qy,,/Qp) for 0 < n < oco. Then, G = A x I' where A = G is a finite group of
order p—1 and I' = Gal(Qp,00/Qp,1) = Z,,. We fix a topological generator v of I and write u = x(7).
In particular, u is a topological generator of 1 + pZ,,.

2.2 Iwasawa algebras and power series

Given a finite extension K of Qp, Ao, (Gs) (respectively Ap, (I')) denotes the Iwasawa algebra of
G (respectively I') over Ox. We write Ax(Goo) = Aoy (Goo) ® K and A (') = Ao, (T') ® K.
When K = Q, (so Ok = Z), we simply write A for Az, . If M is a finitely generated Ao, (I')-torsion
(respectively Ag (I")-torsion) module, we write CharAOK(p)(M) (respectively Chary, ) (M)) for its
characteristic ideal.

Given a module M over Ao, (Goo) (respectively Ak (Goo)) and a character § : A — Zj, M?

denotes the d-isotypical component of M. For any m € M, we write m® for the projection of m into
M?. The Pontryagin dual of M is written as MV.
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Let r € Ryo. We define

He=<{ Y cno-o-X"€CyA][[X]]: supM <ocoVoeA
n>0,0€A no N
where | - |, is the p-adic norm on C, such that |p|, = p~! (the corresponding valuation is written as

vp). We write Hoo = U,>0H, and H (Goo) ={f(v— 1) f € H,} for r € RygU{oo}. In other words,
the elements of H, (respectively H,(G)) are the power series in X (respectively v — 1) over Cp,[A]
with growth rate O(logy). If F,G € Hoo or Hoo(Goo) are such that F' = O(G) and G = O(F), we
write F' ~ G.

Given a subfield K of Cp, we write H, x = H, N K[A][[X]] and similarly for H, x(G). In
particular, Ho x(Gs) = Ax(Gs). Moreover, we have three operators ¢, 0 and 1 on H, g defined
by

df

e(f) =+ X)P=1), of =(1+X)_% and o(f =) fCa+X)-1).

r=1

2.3 Crystalline representations

We write Beis and Bgr for the rings of Fontaine and ¢ for the Frobenius acting on these rings.
Recall that there exists an element ¢ € Byr such that o(t) = pt and g -t = x(g)t for g € Gg,.

Let V be a p-adic representation of G, which is crystalline. We denote the Dieudonné module
by D(V) = Deis (V) = (Beris @ V). If j € Z, DI (V) denotes the jth de Rham filtration of D(V).

We write Do (V) = 'HgQ ® D(V), which is contained in Huo g, ® D(V). The map ¢ ® ¢ on
Hoo,0, ®D(V) is simply written as ¢ and the map 0 ® 1 is written as 0. Note that 0 acts on Do (V)
bijectively, so & makes sense for any j € Z.

Let T be a lattice of V' which is stable under Gg,. For integers m > n, we write cor,, , for the
corestriction map HY(Qpm, A) — HY(Qp, A) where A =V or T. Let Hi, (T) denote the inverse
limit lim H'(Q,,,, T) with respect to the corestriction and HY, (V) = Q ® Hi, (T). Moreover, if V

arises from the restriction of a p-adic representation of G and 7' is a lattice stable under Gg, we
write

HY(T) = lim H' (Z[¢n, 1/p), T),
HY(V) = Q@ HY(T).

Let V(j) denote the jth Tate twist of V, i.e. V(j) = V @ Qpe; where Gg, acts on e; via xJ.
We have D(V(j)) = t7D(V) ® ej. For any v € D(V), v; = v ® t Je; denotes its image in D(V (5)).
We write Tw;y : Hi (V) — Hi (V(j)) for the isomorphism defined in [PR93, Section A.4], which
depends on our choice of (,». For each n and j, we write

expy,j : Qpn @D(V(5) = H (Qpn, V(5)

for Bloch-Kato’s exponential defined in [BK90].

2.4 Modular forms

Let f = > anq™ be a normalised eigen-newform of weight k > 2, level N and character e. Write
Fy = Q(an : n > 1) for its coefficient field. Let f = anq"™ be the dual form to f, we have Fy = F}.

We write L(f,s) for the complex L-function of f. If 6 is a finite character of G, we write
L(fg,s) for the twisted L-function of f by 6.

We assume that p { N and fix a prime of Fy above p. We denote the completion of F at this
4
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prime by E and fix a uniformiser @. We write V} for the 2-dimensional E-linear representation of
Gq associated to f from [Del69]. When restricted to Gg,, V; is crystalline and its de Rham filtration
is given by
_ D(Vy) ifi<0
DI(Vy)={ Fw ifl1<i<k—1 (1)
0 ifi >k
for some 0 # w € D(V}). Hence, the Hodge-Tate weights of V; are 0 and 1 — k. The action of ¢ on
D(Vy) satisfies ¢* — app + e(p)p*~! = 0.

If v € Vi, we write vt for the component of v on which the complex conjugation acts by 1.

3. Construction of the Coleman maps

In this section, we define the plus and minus Coleman maps for a modular form f as in Section 2.4
under the following condition:

— Assumption (1): a, = 0 and the eigenvalues of ¢ on ID(V}) are not integral powers of p.

We first review the definition of Perrin-Riou’s exponential from [PR94] for general crystalline
representations and results of Kato [Kat04] on general modular forms. We then prove a divisibility
property of the image of the Perrin-Riou pairing under assumption (1) in order to define Col™*.

3.1 Perrin-Riou’s exponential

Throughout this section, we fix V' a crystalline p-adic representation of G, such that the action
of ¢ on D(V') has no eigenvalues which are integral powers of p. Let j be an integer. Since ¢ acts
on t via multiplication by p and D(V (j)) = t /D(V) ® e;, the eigenvalues of ¢ on D(V (5)) are not
integral powers of p either.

Since V(j)G@P,OO is also a crystalline representation, it is a sum of characters. But a character
is crystalline if and only if it is the product of an unramified character and a power of x (see for
example [Bre0l, Example 3.1.4]). Therefore, our assumption on the eigenvalues of ¢ implies that

\Go .

V(j)7ere =0.

For each j € Z and n > 0, under our assumptions on the eigenvalues of ¢, the exponential map

exp,, ; induces an isomorphism

expy, j : Qpn @ D(V(5))/D°(V (7)) — H(Qpn. V(5))-
When n > 1, there is a well-defined map
Env()  Deo(V (1)) = Qpn @ D(V(j))
g— P@e) "G(Gr —1)

where G € Hoo, ® D(V) is such that (1 — ¢)G = g (see [PR94, Section 3.2.2]). Moreover,
(exp,, j 9, v(j))n>1 are compatible with the corestriction maps. In other words, the following dia-
gram commutes:

€XPri1,j 041,V (j)

Hl (Qp,n+17 V(]))
lcorn+1/n
HYQpn, V(5))-

The definition of the Perrin-Riou exponential is given by the following theorem, which is the
main result of [PR94].

Doo(V(5))

€XPp j OZn,V (j)
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THEOREM 3.1. Let h be a positive integer such that D™"(V') = D(V). Then, for all integers j > 1—h,
there is is a unique family of A(G )-homomorphisms

Q(hti  Doo(V() = Hoo(Goo)  © Hi (T(5))
A(Goo)

such that the following diagram commutes:

Do (V(5)) Mot HoolGoc) | @ HRL(T())
En, V() lpr
Qpn @ DV () —— P (0, V()
where n > 1 and pr stands for projection. Moreover, we have
Twi,v () Qv (j)hrj © (0 @ te—1) = =Qv i1y htjt1-
Proof. [PR94, Section 3.2.3] O

REMARK 3.2. By [PR94, Section 3.2.4], if g € HB%ES ® D (V(j)) where Do (V (j)) is the subspace
of D(V(j)) in which ¢ has slope «, then Qy () n4;(g) is O(logZJra), i.e. contained in Hpta(Goo) ®
Hi (T(5))-

REMARK 3.3. The theorem implies the following congruence for r > 0:

(=1)" TW, v () () nri (9) = (hti+r—1)1exp, iy, 00 v (410 (0 @t "er)(g) mod (47" ).
3.2 Perrin-Riou’s pairing

Let M be a finite extension of Q, and we further assume that V' is a vector space over M and the
action of G, is compatible with the multiplication by M. We fix T an O)-lattice of V' which is
stable under Gg,. We write V* for the M-linear dual of V' and T* for the Oy-linear dual of T
Since HY(Qyp., T) and HY(Qp, T*(1)) are Opr[Gp)-modules, Hi (T) and Hi (T*(1)) are Apr(Goo)-
modules. By [PR94, Section 3.6.1], there is a non-degenerate pairing

<, > Hi (T) x Hi (T*(1)) — Ao,, (Goo)

((xn)na (yn)n) = ( Z [xz,yn]n . 0'>

oce€Gp n

where [,],, is the natural pairing
HYQpn, T) x HY(Qpp, T*(1)) — Oy
The pairing <, > extends to
Hoott(Goo)  ®  Hi(T) | x | Hoomt(Goo) @ H (T*(1)) | = Hoo,m(Goo),
AOM(GOO) AOM (GOO)

which we also denote by <,>. Let 7 and h be integers satisfying conditions of Theorem 3.1. If
n €DV (j)), then (1+ X)®n € Dso(V(j)). Using the pairing <, >, we define a map:

LI HE(T(7)* (1)) — Hoom (Goo)
z— < Quin(L+X)®@n),2> .

Note that Eg’j modulo 7””71 — 1 induces a map into M|[G,], which we denote by EZ,’%. Also, Eg’j
extends naturally to a map on HJ_(V(j)*(1)), which we write as 52’] also.
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3.2.1 Explicit formulae of El,;j% We want to say something about values of the image of Lff;jﬁl at
some special characters on G. To do this, we make use of the following result.

LEMMA 3.4. Under the notation above, let n € D(V (j)). Then, the projection of

(h_i_]l)Q V(i) (1 + X) @n)

into HY(Qp.n, V(j)) is given by

P expy (S G @ 97 0) + (1= 9) 7)) ifn > 1

expy,j ((1 — —) (1—¢)~ 1(77)) ifn=0.
Proof. This is a straightforward application of Remark 3.3 to the solution of (1—¢)G = (1+X)®
as given in [PR94, Section 2.2]. O

For n > 1 and n € D(V(j)), we write

Vi (1 (Z (i @ " () + (1 w)‘%n)) :

Remark 3.3 and properties of the twist map (see e.g. [PR94, Sections 3.6.1 and 3.6.5]) implies that
for z € H%W(T(j)*(l)) and r > 0,
1
(h+j+r—1)

TWT(‘CZJ(Z)) = Z [eXpn,j-s—r('Yn,j—&-r(nr)g)vZ—r,n]n -0 mod (’an_l -1) (2
UeGn

where Tw, acts on Hoo(Gx) via 0 — x(0)"0 for 0 € G and z_,, is the image of z under the
composition

(—1)" Tw_ )
H (T()(1) s B (T 4+ 1) (1)) 2 HY @y TG+ 1) (1)).

By [Kat93, Chapter II, Section 1.4], we also have
[expn,j+r(')7 ']n = Trn/() ®id ([7 eXpZ,j#»r(')] In>
where exp;, jtr 18 the dual exponential map
expy, ar - H (Qpn, V(I +7)"(1)) = DUV () +7)"(1))
and the pairing
[Jn: Qun @DV (j + 7)) X Qoo @ D(V(j +7)"(1)) = Qp @ M
is induced by the natural pairing
DV (j+7)) x DV (j+r)*(1)) — M.

To ease notation, we simply write [, ], for [,]/, when it does not cause confusion. We can now rewrite
(2) as:
1

Tw, (L"
(h+j+r—=1)! wr(Ly(2))
n—1

= D Trao [ynjer(m)” expp 10 (22rn)], -0 mod (47" 1)

T )

n—1
= Z Vnj+r ()7 Z expy, iy (22,,)0 -1 mod (7" = 1).
0€Gn o€Gn .
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Note that we have recovered the pairing P, of [Kur02]. We write the quantity in (3) as Py, (1, 2—pn)-
Following the calculations of [Kur02], we can deduce the following special values of /JZ’] :

LEMMA 3.5. For an integer r > 0, we have
1
(h+j+r—1)

-[(-2-) - 070,050

Let 6 be a character of G,, which does not factor through G,_1 with n > 1, then

V(£ (2)

1 oo { o
Grjrr—’ (52 (Z)>
= 7(01_1) Z 0~ (o) [907”0%),exp;Hj(zfnn)]n

O'EGn

where T denotes the Gauss sum.

3.3 Modular forms and Kato zeta elements
The details of the results in this section can be found in [Kat04].

3.3.1 L-functions and p-adic L-functions Let f be as in Section 2.4. For any v € Vy such that
vt # 0, it determines a lattice Op-lattice Ty of V. We choose v such that T is stable under Gg.
Note that as a representations of Gg, Vi = Vj(k —1). Hence, Ty determines a lattice T of Vj
naturally.

Let per : DY(V;) — V; be the period map defined in [Kat04]. Fix 0 # w € D'(V}) and let
Q. € C* such that per(w) = Qyv™ + Q_v~. The p-adic L-functions associated to f are given by
the following.

THEOREM 3.6. Let a be a root of X2 —a, X + ¢(p)p*~! such that v,(a)) < k — 1. Under the notation
above, there exists a unique Ly, o € Hoo(G) (depending on the choice of w and v) such that for
any integer 0 < r < k — 2 and any character 0 of G, which does not factor through G,_1 with
n=1,
Cpr "
"0(Lpo) = —2——L(f,0
X ( Pya) T(H)Qi (fa ,’I“)

where ¢, is some constant, only dependent on n and r and &+ = (—1)*="0(—1).

Proof. [AVT75], [MTT86] or [Kat04, Theorem 16.2]. O

If f corresponds to an elliptic curve £ over Q, there is a canonical choice of w and Ty, namely, the
Néron differential and T),(£)(—1) (see [Kur02, Section 2.2.2]) where T,(£) denotes the Tate module
of € at p.

3.3.2 Kato’s main conjecture In order to state Kato’s main conjecture, we have to review two
important results from [Kat04] first.

THEOREM 3.7. Under the notation above, we have:
(a) H2(T}) is a torsion Ao, (Geo)-module.
(b) H'(Ty) is a torsion free Ao, (.. \-module and H'(Vy) is a free Ap(Goo)-module of rank 1.

Proof. [Kat04, Theorem 12.4] O



IwAasawA THEORY FOR MODULAR FORMS AT SUPERSINGULAR PRIMES

THEOREM 3.8. Fix a character 6 : A — Z/(p — 1)Z.

(a) Let 6 be a character of G, and + = (—1)¥="0(—1) where r is an integer such that 1 < r < k—1.
Write
Ko : Qpn @DO(Vi(k — 1)) — Vy
r@y— Y 0(o)o(x)per(y)®,
oeGp

There exists a unique E-linear map (independent of § and r) V; — H'(V}); v — z, such that
kg sends the image of z, in Q,, ® D°(V¢(k —r)) (under the composition of the localisation,
the twist map and the dual exponential) to d, - L(f,0,r) - v¥ and d, is a constant which only
depends on 7.

(b) Let Z(Tf) C H'(V}) denote the Ao, (Goo)-module generated by z,+ € Ty and write Z(Vy) =
Z(Ty) ® Q. Then, the quotient H'(Vy)/Z(Vy) is a torsion Ag(Gs)-module and
Char . (ry (H' (Vy)? /Z(V§)?) C Chary ,ry(H?(V5)°).
(c) If the homomorphism Gg — GLo,(Ty) is surjective, then Z(T¢) C H'(T}). Moreover, H'(T})
is a free Ap,-module of rank 1 and
Chary,, ) (H'(Tf)°/Z(Ty)°) C Chary,, (ry(H?(T})°).
Proof. [Kat04, Theorem 12.5] O

Kato’s main conjecture states that:

CONJECTURE 3.9. The inclusion Z(Ty) C H'(Ty) holds. Moreover, if § : A — Z/(p — 1)Z is a
character, then

Chary,, ) (H'(Tf)°/Z(T})’) = Chary,, () (H?(T})°).

We call elements of Z(V}) Kato zeta elements. In particular, we write z?ato for the one corre-
sponding to our choice of v € V fixed in Section 3.3.1 and call it the Kato zeta element associated
to f.

Wefix v e Vyand w € ]D)_I(Vf(k:)) for the dual form f similarly. Below, we relate the Kato zeta

element z?ato associated to f to the p-adic L-functions of f defined by Theorem 3.6 via the map
EZ’j . For simplicity, we write zX#° = z?ato from now on.

Let V' = V¢(1), then we can take h = 1 and j > 0 in Theorem 3.1 by (1). For n € D(V}), we
simply write

Ly =L)0 Hiy (Ti(k — 1)) = Hoo(Goo)
for the map we defined in Section 3.2, with M = F.

THEOREM 3.10. For o as in Theorem 3.6, there exists 1., an eigenvector of ¢ on D(Vy) with
eigenvalue o such that [n,,®] = 1. Moreover, the image of zZX*° under the composition

TWk_l ‘C"?&

H' (V) — Hi, (VF) —" Hi, (Vi(k — 1)) = Hoo(Gso)
is the p-adic L-function Ly, ,, where the first map is just the localisation and Twy_; denotes ka_lyf.
Proof. [Kat04, Theorem 16.6] O

We sometimes abuse notation and write the above composition as £, also.

9
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REMARK 3.11. Let oy and ag be the roots of X2 — a,X + €(p)p*~!. Then, the slope of ¢ on D(V})
is equal to t = max(vp(1),vp(a2)). Since h = 1 and the slope of ¢ on D(Vy(1)) is t — 1, all elements
of Im(L,)) are O(log;) by Remark 3.2.

It follows immediately from Lemma 3.5 that, with the same notation as in the lemma, we have:
-1
' - *
@) = (1= £2) 0= 0 ) s ()|
p 0
B B . (4)
Z 9 (U) |:(10 n(777‘+1)7 eXpn’T—i-l (Zir,n)] n'
c€eGp

0L, () = i

3.4 The +-Coleman maps

3.4.1 +-logarithms Let f be as above such that assumption (1) holds. If «; and ag are the
roots of X% — a,X + e(p)p*~1, then a; = —as. Moreover, v,(a1) = v,(az) = (k — 1)/2, so Remark
3.11 implies that Im(L;)) C H—1)/2(Goo) for any n € D(Vy).

In [Pol03], Pollack defines:

k—2 o) ;
1 Do (u™77)
+ _ n
Ing,k - H 5 H p ’
=0t n=1

k—2 [e's) ;
- 1 (I)Qn—l(uijf)/)
ot = T & T 2220
7j=0" n=1

where ®,,, denotes the p™th cyclotomic polynomial.

By considering the special values of L, o, and L, 4, as given by Theorem 3.6, Pollack shows that
we have the following divisibility properties:

log;k’aQvaoél - ale7a2’
log;k’vao‘Q - Lp7a1 N
This enables him to define

+ CVQLP,OZI — alLP7a2 (5)
p.f (o2 — 1) log;;k ’
L;f _ L%az — Lpﬂi ] (6)
T (a2 —on)log,

To ease notation, we suppress the subscript f and write L;t for L;t £ The growth rates of these
elements are given by:

k=1
THEOREM 3.12. log, ~ log ) ~log,” and Ly = O(1).
Proof. [Pol03, Lemma 4.5 and Theorem 5.1] O

3.4.2 Definition of the Coleman maps Let us first introduce a shorthand. For 0 < r < k — 2
and x € D(V(r + 1)), we write # mod w for the image of x in the quotient D(Vy(r +1))/E - wy1.
If two elements x and y of D(Vy(r + 1)) have the same image, we simply write z = y mod w.

LEMMA 3.13. Let 0 < r < k — 2 be an integer. If 0 is a finite character as in Lemma 3.5 and
n € D(Vy), then ¢~ ™(ny41) =0 mod w implies that x"6(L,(z)) = 0 for any z.

Proof. We have
Im(exp;, ;1) = Qpn®E @, 1 =Qpn@D°(Vi(k—1—7)) and D°(Vi(r+1)) = E wry1.
10
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Hence, the fact that D°(V;(r + 1)) and ID)O(Vf(kz —1—r)) are orthogonal complements of each other
under [,] and (4) implies that x"0(L,(z)) = 0 if ¢™"(ny41) is a multiple of wy41. O

Recall that £, (z%a%°) = L, . for i = 1,2 by Theorem 3.10. Hence, if we write

77+ — A2Ta; — A1y and N = Nag — 77041’
Q9 — Q1 Qg — a1
then £, (%) = logp k L;t by (5), (6) and the linearity of £. In fact, more is true:

PROPOSITION 3.14. If z € H, (T%), then log 1 1Ly (2) over Hoo p(Goo)-

Proof. Recall that [w,&] = 0, [1a,,0] = 1 and ¢? = a2 on D(V}). Therefore, explicit calculation
shows that 7., = (p(w) + aw )/[ (w),@] for 7 € {1,2}. Hence,
+ o(w) - w
n =T and n =t
[p(w), @] [p(w), @]

Let r be an integer. Since p? = —e(p)p*~2"~2 on D(Vy(r + 1)), we have

4,07"(77711) =0 mod w if n is odd,
© "(n41) =0 mod w if n is even.
(

Therefore, by Lemma 3.13 and (4), we have

X"0(L,+(z)) = 0if n is odd,

X"0(L,-(z)) = 0 if n is even
where 6 and n are as defined in Lemma 3.5. Recall that x(y) = wu, so we have equivalences
X 0(Pp(u"y)) = ,,(0(7)) = 0 if and only if O(y) is a primitive p™th root of unity if and only if 6
factors through G,,+1 but not G,,. Hence all the zeros of logik, which are all simple, are also zeros
of L,+(z), so we are done. O

REMARK 3.15. An alternative proof for this proposition is given in Section 5.1.

AL k=1
Recall that £,+(z) = O(logy® ) and Theorem 3.12 says that 10gik ~ log,? , so we have
L+ (z)/logik = 0(1), i.e. an element of Hy £(G) = Ap(Gs). We define

Col™ : Hi,, (T5(k — 1)) — Ap(Gso)
Ly (z )
logp,C

We call these two maps the plus and minus Coleman maps. Note that we sometimes abuse notation
and write Col™ for the composition

Z —

ka 1 Col*

H'(Tf) — Hiy(Ty) —" Hiy(T(k = 1)) == Ap(Goo)
and its natural extension to Hl(Vf-). In particular, we have
Col*(z"°) = L. (7)

Similar to L, + ,,, we write Col for the map Col® modulo A

REMARK 3.16. The Coleman maps in [Kob03] are defined using a pairing with points coming from
the formal group associated to an elliptic curve, instead of images of the Perrin-Riou exponential.
It is not hard to see that the definition given above agrees with the one given by Kobayashi on
comparing [Kob03, Proposition 8.25] and (3).

11



ANTONIO LEI

4. Kernels of the Coleman maps

In addtion to assumption (1), we assume the following holds.
— Assumption (2): Either p+ 11k —1 or ¢(p) # —1.

Under these two conditions, we give an explicit description of the kernels of the plus and minus
Coleman maps defined in Section 3. In particular, we generalise [Kob03, Proposition 8.18], which
describe the kernels of Col® in the case of elliptic curves defined over Q.

4.1 Some linear algebra

Let us first study some basic properties of Q. Define

Cpn 1f7’l/>17
Ty, = Cp+1% ifn=1,
1 ifn=0

and Q;n) denotes the Q,-vector space generated by {7y, : o € Gy }. Then, Tr,, ), 7, =0 forn > 1
and

@p,n = @Q;(;Z) (8)
=0

PROPOSITION 4.1. Letn > 0 be an integer and ow = Y " z;m; for some z; € Q. Then, the Qp-vector
space generated by {a” : o € Gy} is given by @, g Ql(f) where S = {i : z; # 0}.
Proof. We proceed by induction on |S|. The case |S| = 1 is immediate, so we assume |S| > 1. Write
V for the Q,-vector space generated by {a” : ¢ € Gy}. Clearly, V C @i:xﬁéo QI(;Z). Without loss
of generality, we assume that z, # 0. Let § = Z?:_ol x;m;. Then, by induction, {7 : 7 € G,_1}
generates ®i65\{n} Q](DZ) over Q,. Fix 7 € G,,—1, then

Z a =B+ (Try oy mn)" =187 €V

O'EGn7O'|Qp’n71=T

where 7 = [Qp, : Qpn—1]. Therefore, for any 7 € G,,—1, 37 € V and 7 € V for any ¢ € G,,. Hence
we are done. ]
COROLLARY 4.2. Let n = ag + > ;" a;(, where a; € Q, with ay # (p — 1)ag, then the Qp,-vector

space generated by {n° : 0 € G, } is given by Q, + Z Z Qp - ¢ where S = {r € [1,n] : a, # 0}.
reSoceGn

Proof. The result is immediate if a; = 0 by Proposition 4.1. If a1 # 0, then

ai
n= <ao oo 1) +a1m +Zaz‘7fz‘-

1>1

Hence, we can again apply Proposition 4.1. [

COROLLARY 4.3. Let n =1+ (p+ (p2 + -+ + (pn, then 1 is a normal basis of Qp , over Qp.

4.2 Properties of H'

Recall that when f corresponds to an elliptic curve £ over Q and T%(1) is the Tate module of
£, we have E[p™>] = V;/T¢(1) as Gg-modules. Therefore, the following lemma generalises [Kob03,
Proposition 8.7], which says that £ has no p-torsion defined over k.

12
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LEMMA 4.4. For all j € Z and n > 0, (V;/Ty)(j) % = 0.
Proof. 1t is enough to show that (Vf/Tf)G@wo = 0. Since Vy /Ty = lim Ty /w" T}, it in fact suffices

X
to show that (Tf/wa)G‘@zf'«oC = 0. We make use of the description of the representation p; : Gg,, —
GL(Ty/wTy) given by [BLZ04, Proposition 4.1.4] and consider two different cases.

Case 1, p+ 11k — 1: In this case,

k—1 0
pf‘I = (wo w/k,‘—l)

where I is the inertia group of Gg, and 9 and ¢’ are fundamental characters of level 2, i.e.

kery = kerv/ = G

Qr (7 ~yp)’
Hence, 1 is not an eigenvalue of py(o) for all ¢ € Gal(Q}'( »*~/p)/Qp*( »~/p)), as p+11 k—1. There-

fore, there exists an element in the above Galois group which lifts to Gg, ., and (T/ wa)GQp,oo =0
as required.

Case 2, p+ 1|k — 1: In this case, pylag, . factors through Gal(Q)/Qp,ec) and the eigenvalues
of the Frobenius are the sqaure roots of —e(p). By our assumption, this is not 1, so we are done. [J

We now give two immediate corollaries.
COROLLARY 4.5. The projection HIlW(TJz(j)) — HYQpon, T#(4)) is surjective for all j and n.
Proof. Tt is enough to show that cor,, , : Hl(me,Tf(j)) — Hl(Qp,m,Tf(j)) is surjective for all
n > m. On taking Pontryagin dual, it is equivalent to showing that

resy/m - H' (Qpn, Vy/Ty (k=1 =) = HY(Qpun, Vi /Ty (k =1 = 7))

is injective. But this immediately follows from the inflation-restriction exact sequence and the fact
that Vy/Ty(k —1 — §)%@.0 =0 as given by Lemma 4.4. O
COROLLARY 4.6. For all n and j as above, H (Qp , T¢(5)) — H*(Qpn, V5(5)).

Proof. From the short exact sequence 0 — T¢(j) — V;(j) — V;/Tf(j) — 0, we obtain a long exact
sequence

= (Vi Ty (5) S — HYQpons Ty (7)) — H (@, Vi (7)) — -+
Hence the result by Lemma 4.4. O

In particular, H'(Qpn,Tf(j)) can be identified as an Og-lattice of H'(Qpn, V¢(j)). Another
property of H' which we need is the injectivity of the restriction

HY(Qpm, Vi (5)) — H' (Qpn, V5 (4))

for n > m, which follows from the inflation-restriction sequence and that V(j ). = 0 (immediate
from Lemma 4.4). In particular, the same can be said about H} We regard H}(prm,A) as a
subgroup of H} (Qpn, A) for A =T4(j) or V¢(j) in the next section.

4.3 Some subgroups of H}

Let n* be as defined in Section 3. For 1 < j < k — 1, recall that D°(V;(j)) = E - wj. Using the
shorthand introduced in Section 3.4.2, we define two E[G,]-modules

Rf =Y E-yj(nf)” modwC Q@ DVy())/D(V;().
oeGp

R, =Y E y;n;)° modwC Qe D(V(j)/D(Vi(j)).
oGy

(9)

13
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REMARK 4.7. For 1 < j < k — 1, we have isomorphisms of E[G,]-modules
H(Qpn, Vi (1) = Qo @ D(V;(5))/D°(V5(j)) = Qpn ® E.

Under this identification, the corestriction cory, /p, : H} (Qpns Vi(y)) — H}(Qp’m, V¢(j)) corresponds
t0 Try, /p, ®1d : Qpn @ B — Qp ® E.

By Remark 4.7, we can identify Rij with subsets of Q,, ® E and we have the following de-
scription.

LEMMA 4.8. By identifying Q,, @ D(V (5))/D°(V(j)) with Qp, ® E, we have

Rij= > > E-Gu+E

m even c€G

R,,=> > E-(utE

m odd c€Gm

(10)

where m < n in the summands.
Proof. Recall that v, ; =p™" (Z?:_OI Cpn—i @ @ + (1 — 90)_1) and n* are given by the following:

t= 780@)7 and n = v
[p(w), @]
Hence, we can apply Corollary 4.2 to Ri j provided that
(p—1)(1—9) () #£¢ (n;) modw,

which can be checked under assumption (1). Recall that ¢ (w) = 0 mod w if and only if m is an
even integer (c.f. proof of Proposition 3.14), hence the result. O

Ui

In particular, (8) and (10) implies that
R:’j + R, =Qn®F and R:;j NR,;=FE
under the identification given by Remark 4.7. Let
QE, = {2 € Qpn: Try/mi1(2) € Qpmy Ym € ST}
where S are defined by

St ={me[0,n—1]:m even},
={m e [0,n—1]:m odd}.

i
Then, R, can be identified with Q%, ® E:

n

LEMMA 4.9. For j and n as above, ;'fn QF = Rij.
Proof. By (10), it is easy to check that Rfj C Qin ® E, so dimp Rfj < dimpg (Qin ® E). Since
R:{J + R, ;= Qpn ® E, we have

pn @B+ Quun@E =R+ R, ;= Qpu® E.

Ifz € Qf,NQ,,, then Try, /p 1 (x) € Qpum for all m < n — 1, hence z € Q. Therefore, we have
Q;:n NQ,, = Q. Hence, by the formula dim A + dim B = dim(A + B) + dim(A N B), we deduce
that dimpg (@;,'fn ® E) =dimg Rfj and we are done. L]

14
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Let H}(me, V#(5))* denote the image of Ri ; under exp,, ;, then Remark 4.7 and Lemma 4.9
implies that it is equal to

{x € H{(Qpn, Vi())) : cOrp/mi1(x) € Hj(Qpn, Vy(j)) ¥Ym € Si} .
By Corollary 4.6, if we define
H}(QPJL? Tf(]))i = H}”(Qp,na Vf(])>:t N H}”(Qp,na Tf(]))?
then it is equal to
{2 € BXQpus TH () : cOLins1(@) € HHQpms T (j)) ¥m € S5}
generalising the definition of E* in [Kob03].

4.4 Description of the kernels

k=1
Let z € ]H[Ilw(Tf(kz —1)). Under the notation of Section 3, we have £, +(z) = O(logp* ), so we have
L,+(z) = 0 if and only if P, (7, 2—yn) = 0 for all n > 0 and more than (k — 1)/2 different values
of r with 0 < r <k — 2. Recall that

Par(zorn) =10 D7 [e5Du i1 (nrs1()7), 2] 0
UeGn
Hence, ker P, (9, ") is just the annihilator of {expy, i1 (Y1 (n%)°) : 0 € G, } under the pairing
Hl((@p,nv Vi(r+1)) x Hl(Qp,mTf(k —1-r)—F
which coincides with the annihilator of H} (Qp.n, T¢(r +1))* under the pairing
HY Qpn, Tf(r + 1)) x HY(Qpn, Tf(k — 1 — 1)) — Op. (11)
We denote this annihilator by H1(Qp.n, Ti(k —1—r1)).
Define Hf,, 1 (TF(k—1—7)) = lim HL(Qpn, Tf(k —1—7)). As log;, # 0 and L+ = log,, Col*,
Corollary 4.5 implies that
k—2
ker £,+ = ker (ColF) = ﬂ Tw, (H%Wi (Ti(k—1—7))).
r=0
In fact, by the proposition below, it suffices to take just one term in the intersection.
ProposiTiON 4.10. Tw, (Hllw,i (Tf(k’ —-1- T))) = Hllw’i(Tf(k — 1)) for all integers r such that
0<r<k-2.

Proof. Since Col*(z) = O(1) for all z € HJ | (T¢(k — 1)), it is uniquely determined by its values at
an infinite number of characters (see e.g. [Pol03, Lemma 3.2]). Hence, if there exists a fixed r such
that Pn,r(ni, Zn,—r) = 0 for all n, then Coli(z) = (. Therefore, we have

ker(Col*) = Tw, (Hf, .. (Tf(k — 1 —1)))
and we are done. ]

COROLLARY 4.11. We have ker £,+ = ker (Coli) = Tw, (Hllw,i (Tf(k: —1- 7'))) for any integer
0<r<k-2.

4.5 Pontryagin duality

We have seen that ker(Col®) can be written in terms of HL, about which we now say a little bit
more. The Pontryagin duality gives a pairing:

HY Qo Vi/Ty(r +1)) x H(Qpn, Tf(k —1—7)) — E/O. (12)
15
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We can describe the annihilator of H1 (Q,p, T¢(k — 1 —r)) under this pairing explicitly:

LEMMA 4.12. H}(me,Tf(r +1))*®E/Op — HY(Qpn, V/T(r + 1)) and it can be identified as
the annihilator of H} (Qp.n, Tf(k —1—r)) under (12).

Proof. By definitions, we have an exact sequence
0 — Hi(Qpu, Tk =1 7)) = H'(Qpn, Tp(k — 1 — 1)) — Hom(H }(Qpn, Ty (r + 1))*, Op).
Taking Pontryagin duals, we have
H(Qpon, Ty (r + 1)) * @B/ Op — H (@, Vy/T(r +1)) = Hi(Qp, Tk =1 =1))" = 0.

Therefore, the second part of the lemma follows from the first. Recall that (V;/Ty(r +1))%n =0
by Lemma 4.4, so we have

Hj( Qo Tf(r +1))QE/Op — H{(Qpun, Vi /Ty(r + 1)) € H (Qpn, V/Ty(r + 1)).
Hence, it suffices to show that we have inclusion
H(Qp, Ty (r +1))*®E/Op — H{(Qpu, Ty (r +1))9E/Op.
But this follows from [Kob03, Lemma 8.17]. O

We write H}((@pm,Vf/Tf(j))jE for H}(me,Tf(j))i@E/OE, which is identified as a subgroup
of H}(me, V¢/Ts(5)). Note that it corresponds to the definition of E*(Q,,) ® Q,/Z, given in
[Kob03] and this is used to define Selﬁ in Section 6.

5. Images of the Coleman maps

In this section, we describe the images of Col™. By Corollary 4.5, any elements of H YQpn, T F(k—1))
can be lifted to a global element of HY, (Tf(k — 1)). Hence, we can in fact think of £,+ ,, and Col*
as maps from H 1((@10771,TJf-(l<: — 1)) to E[G,]. This allows us to give a description of Im(Col®) by
studying ITm(Col).

In [Kob03, Section 8], the images of the plus and minus Coleman maps for elliptic curves over
Q are shown to be the following;:

Im(COI+) = (7 - 1)AOE (GOO) + (Z 0) AOE (GOO)v

oEA
Im(Col™) = Ao, (Go)-

In particular, the A-invariant part of Im(Col*) is the whole of (>pen 0)Ao0,(Goo) (Which we
identify with Ap,(I")). For a general f, we unfortunately do not know whether the images of the
Coleman maps are inside Ap,(Gs) or not. However, after multiplying by a power of w, we show
that the A-invariant part of Im(Coli) agree with the above descriptions and the same can be said
for the whole of Im(Col™).

5.1 Divisibility by ®,,(v)
We have seen that the image of £, + is divisible by log;t - We give a necessary and sufficient condition
for such divisibility at the finite level below.

Recall that G = Gal(kso/Q) = A X I' where A is a finite group of order p — 1, I' =2 Z,, and ~
is a fixed topological generator of I'. We have

OplGa] = OplAIN)/(" = 1) and @p(7) =147 492" a7
16
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Therefore, if m > n, then ®,,(y) = p in Og[Gy], so we only consider m < n here.

LEMMA 5.1. Let m < n and

f= Z CT,U'U"YTGOE[Gn].

r mod pn—1
cEA

For each 0 € A and r mod p™, write

br,a =Cro T Crppnog T+ + Crpm .

m—1

Then, f is divisible by ®,,(7) in Og|Gy] if and only if b, , = bs , whenever r = s mod p
Proof. Let f = g®p(y) and g => a5 -0 -v" € Og|Gy]. Then the coefficient of 04" in f is
Oro + Qp_pm=1 5+ + Ap(p_1)pm-1 -

Hence, by, as defined in the statement of the lemma is just the sum of the coefficients a, , of g with
s=r mod p™ ! Hence brs = bs» whenever r = s mod pm L

Conversely, let > ¢, -0-7" € Og[Gy] and define b, , as in the statement of the lemma. Assume
that by, = bs, for all 7 = s mod p" L Let fy(y) = YvCro- 80 f =3 fo-0. We have

folGm)= > D oo | G

r mod p™ \s=r(p™)

= Z br,crcgm

r mod p™
= 2 b D G
s mod pm—1 r=s(pm—1)
=0.
Hence, ®,,(v) divides f and we are done. O

Applying this to the image of £, + ,,, we have:
COROLLARY 5.2. For any z € H'(Qpn, T5(k — 1)), L+ ,(2) is divisible by ®,,(y) in E[Gy] if
m € SE.
Proof. The image of £, + ,(2) is given by the following composition
HY(Qpn, T5(k — 1)) = Homo,, (H'(Qpn, T¢(1)), Or) — E[G,)]
where the first isomorphism is induced by the pairing (11) and the second map is given by
Homoy, (H' (@, T4(1)), Op) — E[Gy]

0 > G(expp (v (1)), (13)
7€Gy

with 6 extended to an element of Hompg(H'(Qpn, Vf(1)), E) in the natural way. Hence, it is enough
to show that the coefficients G(expn’l(yn,l(nli)T), as T € G, varies, satisfy the relations described
in Lemma 5.1. Recall that exp,, ; gives an isomorphism

Qpn ®D(Vy(1))/E - w1 — Hp(Qpn, Vi (1))

Therefore, it is in fact enough to show that yml(nf)T mod w satisfy the relations in Lemma 5.1.

17
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Let 0 € A and r € Z/p™Z. For n = n*, we write

Mro = Z %,1(?71)”3

s=r(p™)
_ . —m—1 -1 -1 —m—1 oy"
=p " Q=9 )+ GO (m) + - F Gmn @ " (m)"

Therefore, if ™™ (1) =0 mod w, then 7, , = 15, for r = s mod p™ 1, as ({m )7 = (¢m)7".
Hence, by the definitions of nT as given in the proof of Proposition 3.14, we are done. O

By considering its image modulo (u ™/ 7)”"71 — 1 similarly, one can deduce Proposition 3.14. We
can in fact say a bit more about the image of £+ ,,.

LEMMA 5.3. If L+ ,(2) = Y ¢ro -0 -7", then ) ¢, is independent of o.
Proof. For each 0 € A, we have

> i) =p T (L= ) + G e ().

But ¢ 1(n) =0 mod w, so we are done. O

We will see later on that these conditions in fact characterise the images of £, ,, completely.

5.2 Images of log;—Lk in Og[G,)]
We now fix an integer j such that 0 < j < k — 2.

LEMMA 5.4. Let x € 1+ pZ,. There exists a constant ¢ such that for any positive integer n,
vp(zP" — 1) =n+ec.

Proof. Let x = 1+ m where m € pZ,, so v,(m) > 1. We have expansion

n n n p" n p"
xP —12(1+m)p1—1:mp+< )mpll—i—‘-'-i-( )m.
pr—1

For r > 0, fup((p:)) =n —vp(r), so

o ((% m) — rup(m) — vp(r) + 1.

If r = p°a where pta and a > 1, then

()= (o))

Therefore, the set {vp ((p : )m’”) > 0} takes its minimum value at » = p® for some s.

Consider the curve f(t) = p'v,(m) —t, for ¢ € R. It has a unique global minimum when
pt = (vp(m)log p)~ !, so the curve is strictly increasing on ¢t > 0. Therefore, for a fixed n, the

minimum of the values
p" s
Up <<ps)mp ) =pvp(m) —s+n

is just vy(m) + n, which is attained at a unique s, hence the result. n
COROLLARY 5.5. If m > n, then ®,,(u"7~)/p is congruent to a unit of Z, modulo 47"~ — 1.
Proof. By definition,

(w9 1
(i)™ 1
18
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so as elements of Og[G,,], we have

1 ) —Jp™ _ 1
S = e
But u € 1+ pZ, by definition, so we are done by Lemma 5.4. O
k—2
REMARK 5.6. We have logik =pl Py waf(u_jy) mod ('ypni1 — 1) where Ay is a unit of Z,
§=0

and w is defined by

o1+ X)= J[ @m@+X)/p,
1<m<n/2

wo(1+X)= J[  @ema(1+X)/p.
1<m<(n+1)/2

5.3 The images of Col
Let RF ; be the E-vector spaces defined by (9). We have:

LEMMA 5.7. The dimensions of the E-vector spaces Ri ; are given by
dimp R, =1+ Y p" 2 (p—1)?
1<m<n/2

dimg R, ;=p—1+ Z P p—1)?
1<m<(n—1)/2

Proof. By (10), we have

dimpg R;’;j = dimg, Q, + Z dimg, Q](fm),
1<m<n/2

dimp R, ; = dimg, @, + > dimg, Q™.
1<m<(n—1)/2

For m > 1, (8) implies that

dime Q;S)m) = dime prm — dime vam_l
=p" ' p—1)—p" 2(p—1)
=p" 2 (p—1)?

and dimg, (@1(91) = p — 2, so we are done. O

The dimensions of these vector spaces enables us to obtain the following;:

pn—lil
PROPOSITION 5.8. Let f = Z Z aro-0-u" € E[Gy]. If wF is as defined in Remark 5.6, then:
ceA r=0

(a) There exists z € H'(Qpn, Vi(k — 1)) such that Col, (z) = f mod w;! (7).
(b) If moreover Zarm = Zarm for all 01,09 € A, then there exists z € H(Qpn, Vi(k —1))
such that Col} (z) = f mod w, (7).
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Proof. We only prove (b), as (a) can be proved in the same way. Define

U, = {g = Zcr,a c 0 'Yr € E[Gn] : IOg;:k ‘gazcﬁal = ZCT,OjVO-luUz S A} .

T '
Then U, is a vector subspace of E[G,] over E. By remark 5.6,

k—2

log, = p" Ay [ wt(w7y) mod (v
=0

n—1

_1)

for some A} € OF. Since w; (u™7(1+ X)) and (1 + X)P"" —1 are coprime for j > 0, log;,k lg if and
only if w(v)|g. But ®,,, and ®,,, are coprime if m; # ms, so w, (y)|g if and only if ®,,(v)|g for
all even m < n.

Let g=) c¢ro-0-u". For each even m < n, let

bg,ma) =Cro T Crgprot ot Crpmo
Then, by Lemma 5.1, ®,,(7y)|g if and only if bﬁfﬁ,‘) = bgﬁ) for all o € A and r = s mod p™~!. For
each such m and o € A, there are p™ ! values of modulo p™~!, each is equated to p — 1 different
values. Since |A| = p—1, there are p” ! (p—1)? linearly independent equations for each m. Together
with the equations of )" ¢, ., there are in total

p—2+ Y p"lp-1)
1<m<n/2

equations describing the coefficients of elements of the U,,, which gives the codimension of U,, over
E in E[G,)].

By Corollary 5.2 and Lemma 5.3, for z € H'(Qpn, Vi(k — 1)), L+ ,(2) lies inside the above
subspace. But the dimension of the image is given by dimpg R;;l which is the same as the dimension

of U, by Lemma 5.7, so L, + ,, (H(Qp,n, Vi(k — 1))) = U, as E-vector spaces and there exists some
z such that £,+ ,(z) = g. This implies

logl':,€ Colt(z) = flog;k mod (’ypn_l —1).

The factors of w;"(u=7v) on both sides can be cancelled out for j > 0 as w;" (u™7v) is coprime to
wi (7). Since p" L (y—Dw (V)wy (7) = 47" ' =1, we deduce that Colt (z) = f mod ((y—1)w; (7)),

n

which implies (b). O

5.4 The images of Col®

In the previous section, we studied the images of H'(Qp.pn, Vi(k — 1)) under Col. To understand
the images of Col®, we have to understand those of H'(Q, ., Ts(k — 1)) as well.

LEMMA 5.9. For all n, there exist r;= € Z such that
+
Lyt o (HY Qo Te(k = 1)) = Lyt n(H (Qpyn, Vi(k = 1)) Nw"™ Op[Gal.

Proof. Note that expnyl(%,l(nf[)) # 0. As an element of H'(Qy,,T¢(1)), it lifts to a cocycle on
Gq,.,- By considering the image of this cocycle in V;(1), which is invariant under the action of G,
there exists 7~ such that

_rE T
@ expy, 1 (Y1 (17)7) € H' (Qpn, Tr(1)) \ @H (@, Tr(1))
for all T € G,.
20
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Recall from (13) that £, , is given by:
Homp (H'(Qp, V§(1)), E) — E[Gy)]
01— > 0exp,, 1 (Yna (1)),

TGGn

where we have identified Hompg (H'(Qpn, Vi(1)), E) with H'(Qpn, V¢(k —1)). Under this identi-
fication, H'(Qp.n, T7(k — 1)) corresponds to the set of maps which send HY(Qpn,Tr(1)) (which is
identified as a subset of H'(Qpn, Vy(1)) as discussed in Section 4) to Op. Therefore, we have

{8(expy 1 (1 ()7 6 € H (Qpun, Ty(k — 1))} = w'* O

for all 7 € GG,. This implies that the LHS of the equation in the statement of the lemma is contained
in the RHS.

Conversely, if z is an element of the RHS of the equation, there exists § € H'(Qy , Vi(k —1))
such that > 9(expn71(7n71(17f[)7)7' = x by Proposition 5.8. In particular,

+
0 (=" expp (Y (0F)7) € Op
for all 7 € G,. Hence, there exists § € Hl(me,Tf(k: — 1)) which agree with 6 on the set
{w‘”ﬂf expml('yml(nfE)T) :7 € Gp}, so x €LHS. O

LEMMA 5.10. Let 7 be the integers defined in Lemma 5.9, then there exist c+ such that rif =
—e(k —1)|[n/2] + cx for n sufficiently large where e is the ramification degree of E.

Proof. By Remark 3.11,
Qv (1+X)® ny) = O(log;(yk_l)/z),
which implies that the nth component of Qy, (1)1 ((1+X) ® nE), which is exp,, 1 (’Yn,l(nfc)) satisfies
expy (n1(n7) € w BT ERE HY(Qy 0, T (1))

for some constant ¢4 independent of n.

Recall that Hi, (Tf(1)) is free of rank 2 over Ao, (Goo). Fix a basis z1, 2o, say. Note that (1 +
X) @ nf form a Agp(Goo)-basis for Doo (V). The determinant of

Qv (1,1 1 Hoo(Gao) ® Do (Vi (1)) = Hoo(Goo) ®H, (T4(1))

with respect to these bases, as a Hoo (G oo )-homomorphism, is given by

k—2 '
[T 1o, (w/7) ~logh™
j=0
up to a unit of Ap(Gs) (this is the §(V)-conjecture of [PR94|, which can be deduced from the

explicit reciprocity law of Colmez [Col98]). But Theorem 3.12 says that log;k ~ logék_l)/ 2. Hence,

we in fact have
Qv (1+X)® nF) ~ 10g;(7k71)/2 .
Therefore, we can choose ¢4 such that
exppy (Yo (n7)) ¢ @ DRIt gy (@, Ty (1)),
+

sor = —e(k—1)|n/2| + cy, for n sufficiently large. O

n

On combining these two lemmas, we have:
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COROLLARY 5.11. If @ is the trivial character on A, then there exist s* such that
Col* (Hi, (Tj(k — 1))’ = w™* Ao, ().

Proof. By Proposition 5.8 and Lemma 5.9, for sufficiently large n,

k—2
w% <Z U) H dsz(u_jy) €Ly, (Hl(Qp,n,Tf(k: — 1)))

oEA 7=0
where
o1+ X)= J[ @wm(+X),
1<m<n/2
o, (1+X) = H Pop—1(1 + X).
1<m<(n+1)/2

Hence, by Remark 5.6 and Lemma 5.10, there exist constants s (independent of n) such that

Sj:
w (Z U) logik € Lty (Hl(Qp,anf(k -1)))
cEA
and
si
Lyt (H (Qppn, Tr(k = 1)) € =° logsry Op[Gal.
+, S0 we have

But log;[k Col* = L,

=" 3" 0 € Col* (H (Qpn, T5(k — 1)) mod & ().
ocEA

Therefore, we are done since

lim Aoy (Goo) [32(7) = Aop(Goc) and Aoy (Gac)’ = (Z o> Aoy (Goo)
STAN

O]

REMARK 5.12. It is clear that we can replace 6 by an arbitrary character on A for the minus map
in the corollary.

6. +-Selmer groups

Throughout this section, with the exception of Sections 6.3.2 and 6.4, assumptions (1) and (2) is
not necessary.

Let f be a modular form as in Section 2.4, K a number field, the p-Selmer groups of f over K
are defined by the following:

Seld(f/K) = ker (Hl(Ka Vi /Ty(1) — [ H' (Ko, Vf/Tf(l)))

Ky, Vi /Ty (1))
Ky, Vi /T(1))

1
Sel,(f/K) = ker (Hl(K, Vi /Ty(1)) — H Z}E

where v runs through the places of K.

We write k,, for Q adjoining all the p™th roots of unity and k. = Uk,. Since there is a unique
place above p in k,, we write this place as p as well. Note that the completion of k, at p is
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isomorphic to Q, ,,. For f satisfying assumptions (1) and (2), let H}(@pyn, Vi /T¢(1))* be as defined
in Section 4.5. For all n > 0, we define the plus and minus Selmer groups by

H (Qpn, Vi /Ty(1))
H}(Qpn, V3 /T(1))*

In this section, we show that Sel,(f/kso) is not Ap, (G )-cotorsion when f is supersingular at p.
When f satisfies assumptions (1) and (2), we show that Selpi(f/koo) = lim Sel;,t(f/kn) is Ao, (Goo)-

cotorsion.

SelE(f /kn) = ker (selp( £ k) —

6.1 Restricted ramification

We now describe the Selmer groups defined above using restricted ramification. Let S be a finite
set of places of a number field K containing all infinite places, all primes above p and those dividing
N. Then, by [Rub00, Lemma 1.5.3],

1

HY(Gs,x, Vy/Ty(1)) = ker <H1(K7 Ve/Tr(1) — | Z}E
vgS

Ko, Vi [Ty(1))
Kmvf/Tf(l))> (4

where Gg i is the Galois group of the maximal extension of K unramified outside S. Therefore, we
can rewrite Sel, as

Sel,(f/K) = ker (Hl(GS,K, V/Ty(1) — @ (15)

Hl(Kv,vf/Tfa))) |
veS

Hi(Ky, Vi /Ty(1))

If f satisfies assumptions (1) and (2), we write H}(k:,w,Vf/Tf(l))jE = H}(l{:n,v,Vf/Tf(l)) for
vt p. Then,

_ H' (K, Vi /Ty (1))
Sel(f /kn) = ker (Hl(Gngn, Vi /Tp(1)) — 62 Tk vf/Tf(l))i> . (16)

The next lemma enables us to give a similar alternative description of Selg as well.

LEMMA 6.1. With notation above, we have H}(Kv, Vi/T§(1)) =0 for v { pN.

Proof. If v is an infinite place, we in fact have H(K,, V¢/Tt(1)) = 0 as p is odd (see e.g. [Rub00,
Section 1.3.7]).

We now assume that v is a finite place not dividing pN. Since v t p,
Hj (Ko, Vi(1)) = Hy (Ko, Vi(1))
by definition and H}(KU, V¢ /T¢(1)) is defined to be the image of HY.(K,, V¢(1)) in H (K, V;/Ts(1))
under the natural map H'(K,, V¢(1)) — H'(K,, V;/T(1)). By [Rub00, Section 1.3.2],
Hy (K, Vi (1) 2 V() /(Fr =1 V(1)

where I is the inertia group of K, and Fr is the Frobenius of K!"/K,. Hence, it suffices to show

that 1 is not an eigenvalue of Fr. But v is a good prime (i.e. v ¥ N), so the eigenvalues have absolute

value q,(,k_l)/ ? where Qv is the rational prime lying below v. Hence we are done. O

If S is as above, Lemma 6.1 and (14) implies that

HY(Gs,x, Vy/Ty(1)) = ker (Hl(Ka Vi /Tr(1) — [[ B (Ko, Vf/Tf(l))> :
v¢S
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Therefore, by the definition of Selg, we have:

Sel)(f/K) = ker (Hl(GS,K, V/Ty(1)) — @ HY(K,, Vf/Tf(1))) . (17)

veS

As stated in the proof of Lemma 6.1, H'(K,, V;/Tt(1)) = 0 if v is an infinite place. We can therefore
simplify (17) further:

Seld(f/K) =ker | H'(Gs,x, Vy/Ts(1)) — @ H'(Ky, Vi/Ty(1)) | . (18)
veSy

where Sy denotes the set of finite places in S.

6.2 Poitou-Tate exact sequences

We now briefly review results on Poitou-Tate exact sequences. Details can be found in [PR95,
Section A.3].

With the above notation, let S be a finite set of places of K containing those above p and the
infinite places, then we have an exact sequence

P HO(K,, Vy/Ti(1) — H*(Gs.x, Ti(k — 1)) — H (Gs.x, Vy/Ty(1)) — @ H' (K., Vy/Ty(1))

’UESf ’UESf
(19)
where S is again the set of finite places in S. On combining (19) and (18), we have
P HO (K., Vi /T(1) — H* (G i, Tk — 1))" — Seld(f/K).
vESy
By taking duals and the fact that HO(K,, Vy/Tf(1))Y = H?*(K,, Tf(k — 1)), we obtain
Seld(f/K)" =ker | H*(Gs.x, Tf(k — 1)) — @ H* (Ko, Tj(k — 1)) (20)

’UGSf

For each v € Sy, let A, C HI(KU,Tf(k — 1)) and B, C H'(K,,V;/Tf(1)) be Og-modules so
that they are orthogonal complements to each other under the Pontryagin duality. Define

H' (K, Vi /Ty(1))

HE(K, Vi/Ty(1)) = ker [ H'(Gs,x, Vy/T5(1)) — P

UESf BU
Then [PR95, Proposition A.3.2] says that we have an exact sequence
HY(K,,Tf(k —1))
H' (G, Ty(k = 1)) — P 5 — HA(K, Vy/T;(1)Y
veESy (21)
— H*(Gsx, Tf(k — 1)) — @ H* (Ko, Ti(k — 1)),

veSy
Hence, we can combine (20) and (21) to obtain the following exact sequence:

HY(Gs,r, Tk — 1)) — @ Hl(K”’if(k —V) — HE(K,Vy/T§(1))" — Seld(f/K)¥ — 0. (22)

”UGSf

6.3 Cotorsionness
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6.3.1 Sel,(f/koo) is not Ao, (Goso)-cotorsion We now prove our claim about Sel,(f/koo)” in
the introduction. Let K = k,. Take B, = H}(kn,U,Vf/Tf(l)) for v € Sy in (22), then A, =
H}(knﬁv,Tf-(k — 1)) by [BK90, Proposition 3.8]. Hence, on combining (15) and (22), we have an
exact sequence

1(Qpn7 (k-1 fino, T k_l))
HI(G57k7l,Tf(k—1))—>H(meTf(k @@Hl o T35 1) (23)

- Selp(f/kn) — Sel®(f /)"

We are interested in taking inverse limit over n. For the terms coming from places dividing IV,
we can apply the following.

LEMMA 6.2. For each integer n > 0, fix a prime v(n) of Q,,, not dividing p such that v(n + 1) lies
above v(n), then

li H! (kn,v(n)a Tf(k - 1))
1m 1 =
wieor Hy (Ko, Tp(k = 1))

Proof. The Pontryagin dual of the said inverse limit is lim H}(kn,u(n)7 V;/T¢(1)), so the result follows
immediately from Lemma 6.1 if v(n) f N. The general case is proved in [Kat04, Section 17.10] by

considering p-cohomological dimensions. O
Therefore, on taking inverse limits in (23), we have the following exact sequence:

HL (T (k- 1)

Hiy (Ty(k — 1))

where H () = lim H}(Qp,n, ) and Hy(-) = lim HY(Gy, .5,-) = H'(:) (see [Kob03, Proposition 7.1]).

Hy(Ty(k — 1)) — Sel(f/koo)" — Selp(f/koc)" — 0 (24)

PROPOSITION 6.3. Sel,(f/kso)" Is not torsion over Ao, (Goo).

Proof. We consider the rank of each term appearing in (24). By Theorem 3.7, H(T F(k —1))
is a torsion-free Ao, (Goo)-module of rank 1. By [PRO0, Theorem 0.6], Hy(TF(k — 1)) = 0. By
[PR94, Proposition 3.2.1], ]HIIlW(Tf(k: —1)) is of rank 2 over Ap, (G ). By [Kob03, proof of Proposi-

tion 7.1], which is a purely algebraic proof and generalises to modular forms directly, Selg( fkso)Y
is Ao, (Goo)-torsion. Therefore, Sel,(f/koo)” has Ao, (Goo)-rank at least 1 and we are done. O

6.3.2 Sel;,t(f/koo) is Ao, (Goo)-cotorsion We again set K = ky,. Let
B, = { H%(kn,vavf/Tf(l)) N if v|N
H (@p,navf/Tf(l)) if v=p.
By [BK90, Proposition 3.8] and Lemma 4.12, we have

A = { H]i”<kn,van(k - 1)) 1f U‘N
Hi(me,Tf(k —1)) ifv=p.

Hence, on combining (16) with (22), we obtain the following exact sequence:
HY (Qpn, Tf(k — 1)) D H (kn,o, Tf(k — 1))
HL@pors Ty (5= 1)) SO (s Ty (6= 1) (25)
— SelE(f /kn)" — Sel)(f/kn)"
25

HY(Gsp,, Tk — 1)) —



ANTONIO LEI

Therefore, on taking inverse limits in (25) and applying Lemma 6.2, we have the exact sequence
Hy,, (T7(k — 1))
Hiy, o (Tf(k — 1))
where Hllei(Tf(k: — 1)) is as defined in Section 4, i.e. lim HL(Qp.n, T¢(k —1)).

HE(TF(k — 1)) — — Self (f/koo)¥ — Seld(f /koo)¥ — 0 (26)

PROPOSITION 6.4. Sel*(f/koo) is Aoy, (Goo)-cotorsion.

Proof. Recall that ker(Col®) = Hllwi(Tf(k — 1)) from Section 4 and Col* (zKat0) = L;t by (7).
Therefore, the cokernel of the first map in (26) is killed by L;t. Therefore, if L;t # 0, it would
imply that the said cokernel is Ap,(Goo)-torsion and the result would follow from the fact that
Selg( f/koo)Y is Ao, (G )-torsion. Hence, we are done by the following lemma. O

+
LEMMA 6.5. Ly # 0.

Proof. The case when f corresponds to an elliptic curve is proved in [Pol03, Corollary 5.11]. The
general case can be proved similarly.

By [Pol03], if 6 is a character on G,, which does not factor through G,_1 and 0 < r < k — 2,
X"0(L) = Cf (O)L(f,0,r +1) ifnis even,
X"0(L,) =C, . (0)L(f,0,r+1) ifnisodd

where Cif, () are nonzero constants. By [Roh88], L(f,0,1) = 0 for finitely many 6 if k = 2. If k > 3,
L(f,0,r4+1)#0 for r+1 < (k—1)/2 by [Shi76, Proposition 2|. Hence we are done. O

COROLLARY 6.6. The first map in (26) is injective.
Proof. 1t follows from Theorem 3.7 and Lemma 6.5. O

REMARK 6.7. It is clear from the proof of Lemma 6.5 that L;,t ’9 =# 0 for any character 6 on
A. Therefore, Sellf( f/kso)? is Ao, (T')-cotorsion and we can associate to it a characteristic ideal,

namely Chary, (r) (Selgt(f/koo)v’e)-

6.4 Main conjectures

We now formulate a main conjecture and relate it to that of Kato. By Corollary 6.6 and the fact
that Selg(f//’ﬂoo)v = HQ(Tf(k — 1)) (see [Kur02]), we have an exact sequence

0 — Hg(T7(k — 1)) — Im(Col®) — Sely (f ko)’ — H*(T7(k — 1)) — 0.
If 0 is a character on A, then
Chary,,_(ry(H5(T(k — 1) /Z(T5(k — 1))?) = Chary,,, (o) (E2(Tj(k — 1))°)

if and only if

Chary,, (r)(Sel, (f/koo)"?) = Chary, () (Im(Col™?) /L)
In other words, Kato’s main conjecture (for f) is equivalent to the following conjecture.
CONJECTURE 6.8. Chara,, (r)(Seli (f/koo)"?) = Chary,, (r)(Im(Col™?)/L;").

Moreover, by Corollary 5.11 and Remark 5.12, we have:

COROLLARY 6.9. Let 6 =+. When § =1 or 6 = —, Conjecture 6.8 is equivalent to

Chary, (1) (Sel (f/kso)V ): (w_siL;,t’e).

REMARK 6.10. It is clear that the RHS in Conjectures 6.8 and 6.9 are contained in the LHS if the
homomorphism Gg — G Lo (Tf) is surjective or if we replace Aoy, (I') by Ap(Goo) by Theorem 3.8.

26



IwAasawA THEORY FOR MODULAR FORMS AT SUPERSINGULAR PRIMES

7. CM forms

We now follow the strategy of [PR04] to prove that equality holds in Corollary 6.9 (with § = 1) for
CM forms.

7.1 Generality of CM forms
We first briefly review the theory of CM modular forms. Details can be found in [Kat04, Section 15].

Let K be an imaginary quadratic field with idele class group Cx. A Hecke character of K is
simply a continuous homomorphism ¢ : Cx — C* with complex L-function

L(¢,s) = [ [(1 = ¢(0)N(v)™) 7!

where the product runs through the finite places v of K at which ¢ is unramified, ¢(v) is the image
of the uniformiser of K, under ¢ and N(v) is the norm of v.

Let f be a modular form as defined in Section 2.4 with complex multiplication, i.e. L(f,s) =
L(¢, s) for some Hecke character ¢ of an imaginary quadratic field K. Then, for a good prime p,

|~ a4 e(p)ph1% = {1 — ¢(p)p_2_5 o %fp is inert_ il'l K
(1—oP)p~)A —o(P)p~°) if (p) =PP in K.
Therefore, a, = 0 if p is inert in K. If p splits into PP, a, = #(P) + ¢(P). It is known that
A(P) + #(P) is a p-adic unit, hence f is ordinary at p. Therefore, for a good prime pt N, a, = 0 if
and only if f is supersingular at p. We fix such a p which is odd.
Let O be the ring of integers of K. We denote the conductor of ¢ by f. For an ideal a of K,
K (a) denotes the ray class field of K of conductor a. We write K for the union U, K (p™f). Then, the

action of Gg on V; factors through Gal(K/Q). The same is then true for Vy(j) for all j as ko C K.

More specifically, Vy = V(¢) @ 7V (¢) where V(¢) is the one-dimensional E-representation of
G i associated to ¢ and 7 is the complex conjugation. The action of Gg is given by

o(z,y) = {(U(l‘)ﬁ(mf)(y)) if o € G,
’ ((to1)(y),70(x)) otherwise.

In addition to assumptions (1) and (2), we assume for simplicity that the following holds:
— Assumption (3): f is defined over Q (i.e. a,, € Z for all n) and K has class number 1.

This is essential for the properties of elliptic units which we need to hold. Note that as a vector
space, V; is isomorphic to K, (where K, denotes the completion of K at p) and we can take T to
be the lattice corresponding to O,. We write p for the character given by

p:Gr — Aut(Vy/Ty(1)) = O,
For simplicity, we write A for V;/T¢(1) from now on.

Recall that K. denote the Z,-cyclotomic extension of K. We write K,, for the unique Zg—
extension of K and £ denotes O,[[Gal(K,,/K)]]. Given a Zy[[Gal(K/K)]]-module Y, we write Yz
for Y®z, ficac/ k) Zpl[Gal(F/K)]] and Yf = Yp(p~!) where F = K. or Kp,.

Let F be an extension of Q. Following [Rub85], we define a modified Selmer group:

HY\(F,, A)

Sel(f/F) =ker [ H'(F,A) — [ HI(F, 4)

vip

For a finite abelian extension F' of K, we define groups Cr, Er and Up as in [PRO4]: Ur is the
pro-p part of the local unit group (Op ®Z,)*, EF is the closure of the projection of the global units
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Oy into Ur and CF is the closure of the projection of the subgroup of elliptic units (as defined in
[Rub91, Section 1], see also Section 7.1.1 below) into Ur. We then define

C=1lmCp, £E=limEr and U =1limUp

where the inverse limits are taken over finite extensions F' of K inside K and the connecting map
is the norm map.

Finally, let M be the maximal abelian p-extension of I which is unramified outside p and write
X for the Galois group of M over K.

7.1.1 Elliptic units We now briefly review the definition of elliptic units associated to K. Let a
and b be non-zero ideals of Ok such that a is prime to 6b and the natural map Ox — (Ok/b)* is
injective. There exists an elliptic function on C/b with zeros and poles given by 0 (with multiplicity
N(a)) and the a-division points respectively. There exists a unique such function if we impose some
norm compatibility condition on its values as a varies. We write 40y for this unique function and
let q2p =q 0p(1) L. Then, 425 € K(b)* for any a and b as above. For a fixed b, the group of elliptic
units in K (b) is defined to be the group generated by 427 where o € Gal(K(b)/K) and the roots of
unity in K (b).

7.2 Properties of SeI;

In this section, we generalise [PR04, Theorem 2.1]. We do this by generalising three results of
[Rub85].

LEMMA 7.1. There is an isomorphism Sel),(f/K.) = Sel,(f/K.).

Proof. By definitions, we have the following exact sequence:
HY (K., A)

0 — Sel,(f/K.) — Sel,(f/K.) — m
c,py

Therefore, it suffices to show that H(K,,, A) = H} (Kcp,A). By [BK90, Proposition 3.8],
HY(Kop, A
—em ) = lim HY(K, THk — 1)).
(H}(Kc,paA)> o T\ f
Hence, it suffices to show that the said inverse limit is 0.
Note that Gal (Kp,n / KIS”‘”) = A, we have the inflation-restriction exact sequence
0 — HY(A,T(k = 1)) — B (K, Ty(k = 1) — H Ky Ty(k — 1))
— HQ(A, Tf—(k: — l)GKPm).
As K;,/Qp is unramified, the proof of Lemma 4.4 implies 77 (k — 1)%%pn = 0 for all n. Therefore,
HY K, Tr(k — 1)) 2 HY (Kpn, Tr(k — 1))
By [PROO, Theorem 0.6], we have lim H}(Kn,p, T¢(k — 1)) = 0, hence we are done. O

This corresponds to [Rub85, Theorem 2.1], which holds for any infinite extensions of K contained
in K. Since we have used a result on the inverse limit of H} over K, ,, the proof above would
unfortunately not work in such generality.

We now generalise [Rub85, Proposition 1.1].
LEMMA 7.2. There is an isomorphism Sell (f/K) = Hom(X, A).
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Proof. Since the action of Gk on A factors through Gal(K/K), we have H'(KC, A) = Hom(Gx, A).
We can therefore identify Sel,(f/K) with a subgroup of Hom(Gk, A). Also, the triviality of the
action implies that A is unramified at all places of K. Therefore, H}(ICU, A) = HL(K,, A) for all
v t p by [Rub00, Lemma 3.5(iv)]. Hence, Sel},(f/K) corresponds to the subgroup Hom(X, A) C
Hom(Gk, A). O

Before we continue, we state a result of Rubin.
LEMMA 7.3. Fori= 1,2, H(K/K,., A) = 0.
Proof. See [Rub85, proof of Proposition 1.2]. O

This allows us to generalise [Rub85, Proposition 1.2].
LEMMA 7.4. There is an isomorphism Sel;,(f/K.) = Selé)(f/lC)Gal(’C/KC).
Proof. We have the inflation-restriction exact sequence

0— HY(K/K., A) —» HY(K,., A) 5 H' (K, A)SIK/Ke)  H2(K /K., A)
where r is the restriction map. Consider the following commutative diagram:
HY (K., A) - HY(K,A)

l |

Hl (Kc,vv A)/H}(Kc,va A) I Hl (ICU/, A)/H}(Kv’a A)

where v { p is a place of K. and v’ is a place of K above v. It clearly implies that
7 (Sel,(f/Ke)) C Sel(f/K).
Write v’ for the place of K.(f) below v/, then v’ is unramified in I/ K.(f). Therefore, the map
rot H' (Ig g ,,A) — H' (I, A)

where I denotes the inertia group is injective. This implies that
HY (Ke(f)wr, A)/HF (K)o, A) — H (Ko, A)JHf (K, A)

is injective because the H} coincide with H}.. But Gal(K.(f)/K.) has trivial Sylow p-subgroup,
hence the bottom row of the commutative diagram above is injective. Therefore, we have

11 (Sell (f/K)) C Sely(f/K.).
Hence, we have an exact sequence:
0— HYK/Kc, A) — Sell(f/K.) = Sel, (f/K) KK — HA(K/K,, A).
Hence, we are done by Lemma 7.3. O
We can now give a generalisation of [PR04, Theorem 2.1]:
COROLLARY 7.5. Sel,(f/K.) = Homo (X% , Kp/Op).
Proof. On combining Lemmas 7.1, 7.2 and 7.4, we have

Sel, (f/K.) = Sell(f/K.)
= Selr (f /KC) 1K/ Ke)
=~ Hom(X, A)Cal(k/Ke)
But Alg, = K,/O,(p), hence the result. O

29



ANTONIO LEI

7.3 Reciprocity law

In this section, we generalise the reciprocity law given by [PR04, Theorem 5.1]. We first review a
result of Rubin.

THEOREM 7.6. The £-module Cf(m is free of rank 1.

Proof. Tt follows from [Rub91, Theorem 7.7]. O

We now generalise [PR04, Proposition 4.1]:
LEMMA 7.7. H (K, p, A) = Homo (Ug. , K,/ Op).

Proof. As in the proof of Lemma 7.2, we have H' (K, A) = Hom(Gx,, A). But we also have an iso-
morphism H' (K, ,, A) & H'(IC,, A)G(Ks/Kep) by the inflation-restriction sequence and Lemma 7.3.
Hence, by local class field theory, we have
H'(K.,p, A) = Hom(Gy,, A)%!(Kn/Kes)
= Homop, (U, A)

(see [Rub87, Proposition 5.2]). By the proof of Lemma 7.1, we have H}(Kcyp,A) ~ HY K., A),
hence we are done. O

In particular, we have a pairing <, >: H} (ch, A) x L[;}C — K,,/Op. We now prove the explicit
reciprocity law.

PROPOSITION 7.8. There exists a generator £ of Cl,  over £ such that for any finite extension F of
K contained in K., 0 a character on G = Gal(F/K) x € Hf(Fp,A) and r a non-negative integer,
we have

—r 77"L — 71 - g\
S 0(0) <27 @p T € >=p (fgi) > 0o) exppt ) (0,01 (27)
oG ! ocG

where §(—1) = 4+ and exp;,p1 V(1) is the inverse of the exponential map

exXpp, v, (1) | Fp @ D(VF(1))/DO(Vy (1)) = Hp(Fp, Vy(1)).

Proof. Let zpeo; = (2pn)n be the system of norm-compatible elliptic units in lim K (p"f) defined in

[Kat04, Section 16.5], then gz, is a multiple of zpns for all a and p"f satisfying the conditions in
Section 7.1.1. Therefore, if we write £ as its image in C”, -, 1t must be a generator of Cf(m over £ by
Theorem 7.6.

Let x € H}(Fp,Tf(l)) and y € H'(F,, Tf(k — 1)), we have

> 00) "yl = 3 000 ey [expi v, 1) (7). ex0, vy, )]

oceG oceG
—1 oT * T

= > 00) [exvrl v, () @) exv vy, (07)]
o,7eG

= 3" (o0 (7) [expRl v, 1) (077 exp, vy, (7))
o,7eG

= [Z 0(o) epr Vi ZG eXPprf(k 1)(y7)] .
oeG TeG
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Consider the Kummer exact sequences:

C u

| |

lim H' (O [1/p], 0,(1) lim H' (K}, 0,(1))

J{®pxk—2 l®pxk—2

lim HY (Og/[1/p], Tk — 1)) — I@HI(KI’J,TJZ(k —1)).

By [Kat04, Proposition 15.9 and (15.16.1)], the image of zpe in lim H (Ox/[1/p], Tp(k—1))is ziato

(up to a twist) and so £ satisfies

L(f@*h 1)@—1
Y 0T ) el v, (€)= T
=, PV f(k—1) Qf
Therefore, we have:
_ L(fg-1,1)w_1
29(0)<x0®p "E>=p " 29 eprV 1)(93”) (991)
ceG ceG f
as required. O

7.4 Proof of the main conjecture

On replacing Q,,, by K, we define H} (Kpn, W)* and hence Sel;t(f/Koo) as in Section 6 where
W = A or T¢(1). Let G = Gal(K/Q). As in the proof of Lemma 7.1, the inflation-restriction
exact sequence implies that H(Qp,, W) = HY(K,,, W)Y for W = A or Tf(1), so we recover
Seli(f/k ) on taking G-invariant. Similarly, on replacing Qp , and K, by Q](Jn_l) and KI(,n_l)
respectively, we define the +-Selmer groups Seli( f/Qc) and Seli( f/K.). Under our assumptions,
they coincide with the A-invariants of Sel (f/kso) and Seli( f/K) respectively. Analogously, we

have HL(F, Ts(k — 1)) for F' = K, p, Kﬁ” Y or Qz(,n Y. Since K,/Q, is unramified, all the results
from the previous sections generalise directly on replacing Q, by K

Via the isomorphism defined in Lemma 7.7, we define V* C L{;}c to be the subgroup correspond-

ing to the elements of Homp (Hl(ch, A), p/(’)p> which factor through Hl(ch, A)*. Then, by

[PRO4, Theorem 4.3], Sel>(f/K.) = Homp (X%, /a(V¥), K,/O,) where o is the Artin map on U,
which enables us to generalise [PR04, Theorem 7.2]:

THEOREM 7.9. Let st be as given by Corollary 5.11, then
_sE
Chary,, () (Homo (Sel(f/Ke), K,/ Op)) = (p L;,'E) .
Proof. By the above isomorphism and [PR04, Theorem 6.3], we have:
Chaerp(p) (Hom@ (Sel;t(f/Kc), Kp/(’)p))
= Charyg, ) (X%, /a(V5)
= Chary,, 1) (Ug,/(V" +Ck.)) -
By Corollary 5.11, the quotient H'(Q.p, T7(k — 1))/HL(Qcp, T7(k — 1)) is free of rank one
over A(I"). Hence, by (13) and the proofs of Lemma 5.9 and Corollary 5.11, the A(I')-module
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Hom (H} (Qep, Ty (1)), Zp> is also free of rank one and it has a generator fi such that

+ n—1
> frlexp, 1 (ma(ni)7))o =p* log,  mod (7
O'EGn

-1) (28)

Note that we have abused notation by writing expn’l(fyn’l(nli)) for its image in Hl(@(” 2 ,Tr(1))
under the corestriction.

As in [PR04, Theorems 7.1 and 7.2], we have

Hom (H}(Qe,p, A)*, Qp/Zp) 2= Hom (H(Qep, Ty(1))%, Zp) ,
Homp (Hf(KCp, A)*,K,/0,) =~ Hom (H}(Qeyp, A)*,Q,/Z,) ® O

Let u* and 9% be the images of f+ and ¢ from Proposition 7.8 in Homg (H}(qu, At Kp/Op)
respectively. Then 9* = h* T for some h* € Ao, (I"). As in [PRO4, proof of Theorem 7.2], there is
an isomorphism Z/{[p(c/(l)i +Cx.) = Ao, (T')/h*Ao,(T). Hence we have:

Chary,, () (Homo (Sel, (f/Ke), Kp/Op)) = h* Ao, ().

Let F be a finite extension of K contained in K, 6 a character of G, the Galois group of F' over
K, ze H} (Fp, A), r and integer, then ¥ = h*p® implies

Y 0(0)0 (27 ©p ) = 0(hF) Y b(o)u* (2" @p") (29)

oceG oeG

We now take x = expn,l('ynyl(nfc)). By (28), the RHS of (29) is just p*’*sie(hi)G(logik). Then,
(27) implies that the LHS of (29) equals to the following:

f9 & 1 [Ze 7n1 771 ) —1]

ocG
where 6 = §(—1). We now compute ZoeG 0()Yn1 (n)°.
Take F' to be K,S"‘” and 6 a character of conductor p". Then

> 0(0)yma(n Z (Zc i >+(1—so>1<nf>>>

e e

=p" ) 0(0)5 ® 0" (n)

oeG
=p "7(0)¢ " (ny)
where 7(0) denotes the Gauss sum of 6. Since ¢? + €(p)p*~ = 0 on D(V}(1)), we have
1 P rp(w)i/lp(w),@] (for n odd),
i) = (e ) F p(w)i/lp(w), @] (for n even).

PO 00E5,) = (el @ g (ornoau)
P 8(h )00 ) = (—e(p)pk1)2"7(9)“%‘;’1) (for n even).
f
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Therefore, by the interpolating properties of L;,t at these characters, we have:

p® 0(h™) =0(L,) (for n odd),
p* O(ht) = 0(L;5) (for n even).

But AT and L]f are both O(1) and the above holds for infinitely many n, so h* = p*Si L;t. Hence
we are done. O

By taking G-invariants, we have the following.

COROLLARY 7.10. Chary(ry (Seli (£/Q0)") = (p™* L ).
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