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ABSTRACT. For ordinary modular forms, there are two constructions of a p-
adic L-function attached to the non-unit root of the Hecke polynomial, which
are conjectured but not known to coincide. We prove this conjecture for mod-
ular forms of CM type, by calculating the the critical-slope L-function arising
from Kato’s Euler system and comparing this with results of Bellaiche on the
critical-slope L-function defined using overconvergent modular symbols.

1. SETUP

1.1. Introduction. Let f be a cuspidal new modular eigenform of weight > 2,
and p a prime not dividing the level of f. It has long been known that if « is any
root of the Hecke polynomial of f at p such that v,(a) < k — 1, then there is a
p-adic L-function L, (f) interpolating the critical L-values of f and its twists by
Dirichlet characters of p-power conductor; see | , , ]

If f is non-ordinary (the Hecke eigenvalue of f at p has valuation > 0) then
both roots of the Hecke polynomial satisfy this condition, but if f is ordinary,
then there is one root with valuation k — 1 (“critical slope”), to which the classical
modular symbol constructions do not apply. Two approaches exist to rectify this
injustice to the ordinary forms by constructing a critical-slope p-adic L-function.
Firstly, there is an approach using p-adic modular symbols | , , ]
Secondly, there is an approach using Kato’s Euler system | | and Perrin-Riou’s
p-adic regulator map | ] (cf. | , Remarque 9.4]). Although it is natural to
conjecture that the objects arising from these two constructions coincide (cf. | ,
Remark 9.7]), and the results of | ] are strong evidence for this conjecture,
prior to the present work this was not known in a single example.

In this paper, we show that the two critical-slope L-functions coincide for modu-
lar forms of CM type. In this case, Bellalche has shown | ] that the “modular
symbol” critical-slope p-adic L-function is related to the Katz p-adic L-function for
the corresponding imaginary quadratic field. We show here that the same relation
holds for the Kato critical slope p-adic L-function, by comparing Kato’s Euler sys-
tem with another Euler system: that arising from elliptic units. Using the results of
[ ] and [ | relating elliptic units to Katz’s L-function, we obtain a formula
(Theorem 3.2) for the Kato L-function, which coincides with Bellaiche’s formula for
its modular symbol counterpart (up to a scalar factor corresponding to the choice
of periods). This establishes the equality of the two critical-slope p-adic L-functions
for ordinary eigenforms of CM type (Theorem 3.4).

1.2. Notation. Let K be a finite extension of either Q or Q,, where p is an odd
prime. We write Ko, = K(up~), K for an algebraic closure of K and K?" for
the maximal abelian extension of K in K. A p-adic representation of the absolute
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Galois group Gal(K/K) is a finite-dimensional Q,-vector space with a continuous
linear action of Gal(K/K).

A Galois extension L of K will be called a p-adic Lie extension if G = Gal(L/K)
is a compact p-adic Lie group of finite dimension. In this case, we denote by A(G)
its Iwasawa algebra; it is defined to be the completed group ring

A(G) = limZ,[G/U),

where U runs over all open normal subgroups of G. We write Q(G) for the total
quotient ring of A(G). If R is a p-adically complete Z,-algebra, we shall write
Ar(G) for R® A(G), the Twasawa algebra with coefficients in R.

If L is a complete discretely valued subfield of C,, we write Hr(G) for the
algebra of L-valued distributions on G (the continuous dual of the space of locally
L-analytic functions). This naturally contains Az (G) as a subalgebra. When G is
the cyclotomic Galois group I' (isomorphic to Z,), and i € Z, we shall write ¢; for

the element % — i of Hg, (I') (where v is any element of T' of infinite order).
Assume now that K is a number field, and let S be a finite set of places of
K (which we shall always assume to contain the infinite places). Let K be the
maximal extension of K which is unramified outside S, and let V be a p-adic
representation of Gal(K¥/K). For an extension L of K contained in K*, write
HL(L, V) for the Galois cohomology group H'(Gal(K® /L), V). Let T be a Gal(K/

K)-stable lattice in V. If L ¢ K is a p-adic Lie extension of K, define
Hllw,S(Lv T) = I&n Hé(Lm T)’

where L, is a sequence of finite Galois extensions of K such that L = J,, L,, and the
inverse limit is taken with respect to the corestriction maps. Note that Hy, ¢(L,T)
is equipped with a continuous action of G = Gal(L/K), which extends to an action
of A(G). We also define Hy,, 4(L,V) = Hy,, 4(L,T) ®z, Qp, which is independent
of the choice of lattice T'.

Similarly, let F' be a finite extension of Q,, V a p-adic representation of Gal(F/F)
and T a Gal(F/F)-invariant lattice in V. For a p-adic Lie extension L of F such
that L = J Ly, with L, /F finite Galois, define

Hi,(L,T) =WmH'(L,,T)  and  Hy,(L,V) = H (L, T) ©z, Q.
For a finite extension K of Q, denote by Ag the ring of adeles of K. If § is

an integral ideal of K, write K (f) for the ray class field modulo §. Let K(§p>°) =
U,, K(jp"), and define the Galois group Gjp = Gal(K (jp™)/K).

1.3. Grossencharacters. Let K be an imaginary quadratic field. We fix an em-
bedding K — C. An algebraic Grossencharacter of K of infinity-type (m,n) is a
continuous homomorphism ¢ : K*\Ax — C* whose restriction to C* is given
by z +— 2z™Mmz".

Let 6 be the Artin map K* /K* — Gal(K*?/K). We choose the normalizations
such that

O(wq) = [q) =" mod Iy,

where wq is a uniformizer at the prime q, I, is the inertia group and [q] is the
arithmetic Frobenius element at q. Then we have the following well-known result:

Theorem 1.1 (Weil, | D). Let ¥ be an algebraic Gréssencharacter of K, and
let L be the finite extension of Q inside C generated by 1(K*). Then for any prime
A of L, there is a (clearly unique) continuous character

Yy : Gal(K/K) — LY

with the property that
w)\ o 9 = wh’(\.)( .
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The character 1y is unramified outside the primes dividing (f, where £ is the prime
of Q below A\ and § is the conductor of 1.

The choice of normalization for the Artin map implies that

Ua(la]) = ¥(a)
for each a coprime to ¢f. With these conventions, the Hodge-Tate weights' of 1
are given as follows. Let A be a prime of L, and p a split prime of K, which lie
above the same prime of L N K. Then the decomposition groups of p and & in
Gal(K®*/K) are each isomorphic to Gal((@;b /Q,), and the Hodge—Tate weight of
¥y is m at u and n at .

2. COMPARISON OF EULER SYSTEMS

2.1. Elliptic units. As above, let K be an imaginary quadratic field, with a fixed
choice of embedding K — C. We shall fix, for the remainder of this paper, an
embedding K < C compatible with this choice. In particular, for each integral
ideal f, we regard the ray class field K (f) as a subfield of C, and we write K (f)* for
its real subfield”.

Definition 2.1. If L is a subfield of C, a CM-pair of modulus § over L is a pair
(E,a) consisting of an elliptic curve E/L and a point a« € E(L)yors, such that

o there is an isomorphism Endgr(E) = Ok, such that the resulting action
of Endg(E) on coLie(E/KL) = KL is the natural action of K;

o the annihilator of o in O is exactly f;

e there is an isomorphism E(C) — C/f mapping « to 1.

Note that we do not assume that I O K here, hence the slightly convoluted
statement of the first condition.

Theorem 2.2. Let f be such that O3 N(1+f) = {1}, f = §, and the smallest integer
in f is > 5. Then there exists a CM-pair of modulus § over K(§f)T, and for any field
L containing K (f)T, this CM-pair is the unique CM-pair of modulus f over L up to
unique isomorphism.

Proof. Consider the canonical CM-pair (C/f, 1) over C. This corresponds to a point
P; on the modular curve Y;(N)(C), where N is the smallest integer in f.

Since N > 5 by assumption, the curve Y7 (V) has a canonical model over Q such
that Y7 (IV)(L) parametrises elliptic curves over L with a point of order N for each
L C C. Our claim is then precisely that P; € Y1 (N)(K(f)T).

It is clear that P; € Y7 (IN)(R), since there is a canonical isomorphism from C/f to
the elliptic curve Eg = {y? = 42 — gow — g3} where g, and g3 are the usual weight
4 and 6 Eisenstein series, given by z +— (p(z,§), ¢'(2,1)). Since f = §, the coefficients
go and g3 are real, so Eg is indeed defined over R; and as p(z,A) = (2, A), this
uniformization maps 1 € C/f to a real point of Er. Hence P; € Y;(N)(R).

On the other hand, it is well known that there exists a CM-pair of modulus § over
K () (whether or not f = f), so P; € Y1(N)(K(f)). Hence P; € Y1(N)(K(f)"). O

Remark 2.3. It follows from this construction that the canonical CM pair (E, @)
over K(f)T becomes isomorphic over R to (Eg,image of 1 € C). So the complex
conjugation automorphism of E(C) arising from this K(f)*-model corresponds to
the natural complex conjugation on C/f.

e adopt the convention that the cyclotomic character has Hodge—Tate weight +1; this is, of
course, the Galois character attached to the norm map AIX{ — R*, which has infinity-type (1, 1).

2We stress that K(§) is not a CM field in general, so the definition of K (§)* depends on the
choice of embedding, and in particular K (§)1 is not a totally real field.
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We recall the theory of elliptic units, as described in | , §15.5-6].
Theorem 2.4. For each pair (§,a) of ideals of K such that O} N (1+f) = {1} and

a is coprime to 6f, there is a canonical element
uef € K(f) x )

the elliptic unit of modulus f and twist a. If § has at least two prime factors,
a€f € O?((f); and for any two ideals a,b coprime to 6f, we have

(N(b) = [b]) - o€} = (N(a) — [a]) - vey,
where [a] = (W) € Gal(K(f)/K) is the arithmetic Frobenius element at a.

Vital for our purposes is the following complex conjugation symmetry of the
elliptic units:

Proposition 2.5. If f satisfies the hypotheses of Theorem 2.2, then we have
a€f = ;.

Proof. This follows from the construction of the elliptic units. We have

a€f = ofp(a) "

where (F,a) is the canonical CM pair over K(f), and 40g is the element of the
function field of E constructed in | , §15.4].

By Theorem 2.2, E admits a model over K (f)*, and it is clear that if ¢ is the
nontrivial element of Gal(K (f)/K (f)*) arising from complex conjugation, we have
(o E) = gE and hence (by the uniqueness of ,0g) we have (,0g)" = 0g. Since
a € E(K(f)*), we deduce that

261 = (abp)" ()" = abp() " = ae;
as required. O

Remark 2.6. Modulo differing choices of conventions, this is the formula labelled
“Transport of Structure” in §2.5 of | ].

2.2. Elliptic units in Iwasawa cohomology. Let p be a rational prime which
splits in K. For fixed § (which we shall assume prime to p), the ideal g = fp"
satisfies the condition O} N (1 + g) = {1} for all n > 0, so if (a,6pf) = 1 we may
define the elements qespn. These are norm-compatible (c.f. | , §15.5]), and we
may extend their definition to all n > 0 using the norm maps.

Note 2.7. Since fp" has at least two prime factors for n > 1, we have qeppn €
X
Ok
Let S be a set of places of K containing the infinite places and the primes above
p. Then we have the Kummer maps
krt Ly @2 O0F g — H5(L,Zy(1)).

Since the sequence of elements gejp = (a€jpn )n>0 is a norm-compatible sequence
of units, their images under the Kummer maps are corestriction-compatible, so we
obtain an element

wejpee € Hiy, s(K(7p™), Zy(1)) = lim Hg (K (fp"), Zy(1)).

Theorem 2.8. If | is Galois-stable, then we have
L (a®fp) = aCpp,

where v, is the involution of Hy, ¢(K(fp>),Zy(1)) induced by complex conjugation.
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Proof. Immediate from Proposition 2.5, since fp™ satisfies the conditions of Theo-
rem 2.2 for all n > 0. U

Definition 2.9. We also define the element
efpee = (N(a) = [a]) 7" - qeppoe € Q(Gip) O (Gypo0) Hin,s (K (707, Zp(1)),

where A(Gjpe) is the Twasawa algebra of Gipeo = Gal(K(fp™°)/K) and Q(Gipe)
its total ring of quotients.

Note 2.10. The element ejp~ is independent of the choice of a.
Corollary 2.11. We have ty(€5po) = €jpoo.

Proof. The automorphism ¢, of H11W7S(K(fp°°), Zp(1)) is A(Gjpe)-semilinear, with
the action of ¢ on Gj,~ being given by conjugation in Gal(K/Q); hence ¢, extends

canonically to the tensor product with Q(Gjpe~); and since ¢[a]e = [a], this finishes
the proof by Theorem 2.8. O

Let W be any continuous representation of Gj,~ on a one-dimensional vector
space over some finite extension L of Q,. Then we have an isomorphism

(1) Hi, s(K (%), Z,(1)) @z, W — HE (K (}p™), W(1)).

Definition 2.12. For an element w € W, let ey (w) be the image of ejpee @ w
under (1), which is an element of

Q(Grp=) @a(Gyyoe) Hiw, s (K (97), W(1)).
Define
QOO(w) € Q(F) QA(D) Hllw,S(Kom W(l))
to be the image of espe (w) under the corestriction map
Hiy, 5 (K (%), W(1)) — Hy, s(Koo, W(1)).

Lemma 2.13. If W has no fized points under Gal(K (fp>°)/K ), then we have

eno() € H1, 5(Kuo, W(1)).
Proof. Let I be the ideal in A(fp>°) generated by the elements (Na—[a]) for integral

ideals a prime to 6f. Suppose Gjy~ acts on W via the character 7 : Gjpeo — L.
Then we must show that the ideal in A(T") generated by the elements

{(Na—7([a])"*[a]) : a is an integral ideal coprime to 6}

contains a power of p. However, if this is not the case, it must consist of elements of
A(T) which all vanish at some character n of I'. Then x([a])7([a]) — n([a]) vanishes
for every a. By the Chebotarev density theorem, we must have 7 = x~'n, which
contradicts the assumption that 7 does not factor through I. O

We write «WW for the representation of Gjpe that acts on {vw : w € W} via
g (tw) = t(egt) - w.
Theorem 2.14. If W has no fized points under Gal(K (fp>°)/K ), the element
eco(w) € Hyy, (Koo/ K, W (1))
satisfies
L (€oo (W) = €00 (1w)
where L, is induced from the maps

Hy(K ("), W (1)) — Hg(K(fp"), ((W)(1))
sending a cocycle T to the cocycle g — 17(1gt), for each n > 0.

We split the proof of the theorem into a number of steps.
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Definition 2.15. Let A¥(Gjp)(1) denote A(Gipe<)(1) endowed with the action of
Gal(K®/K) wia the product of the cyclotomic character with the inverse of the
canonical character Gal(K®/K) — Gipee < A(Gjpeo )™, ice. gw = x(9)g 'w for
any g € Gal(K® /K) and w € A*(G). Here, g denotes the image of g in Gy

Lemma 2.16. We have a commutative diagram

HL, (K (19%), Zy (1)) @2, W —— Hi, o(K(7p%), W(1))

(2) L @L Ly

HL, (K (1), Z (1)) @z, W — B, o(K(p™), (W) (1))

where the left-hand vertical map is the tensor product of the automorphism . of
H11W7S(Koo, Zp(1)) and the canonical map ¢ : W — (W, and the right-hand vertical
map is as defined in the statement of Theorem 2.1/.

Proof. We will deduce this isomorphism by using an alternative definition of the
Iwasawa cohomology which renders the horizontal maps in the diagram easier to
handle. By Shapiro’s lemma, we have a canonical isomorphism of A(Gjpe )-modules

Hy, s(K(7p>), M(1)) = Hg(K, M ©z, A*(Gjp=)(1))
for any Gal(K*/K)-module M which is finite-rank over Z, or Q,.
Let 7 be the character by which Gjpe acts on W, and define 7. : A¥*(G) — A¥(G)
to be the map induced by g — 7(g)*g. Then the natural twisting map
j HY (K, AN G)(1) @ W — HE(K,AHG)(1) @ W),
is explicitly given as follows: if ¢ : Gal(K¥/K) — A*(G)(1) is a cocycle and w € W,
define
Jle®@w)(g) = 7u(c(9)) @ w.
We check that j(c ® w) is a cocycle. Let h, g € Gal(K®°/K). Then
j(e @ w)(gh) = 7. (c(gh)) © w
=Tu(g-c(h)) @ w + Tec(g) @ w
= X(9)7(g7 " e(h)) @ w + Tic(g) @ w
=x(9)7(9) 97" [<(c(h)] ® w + i (c(g)) @ w
= glilc@w)(h)] + jlc®w)(g)

Rewrite the diagram (2) as

HY(K, A (G)(1)) @z, W Jw, HL(K, A (G)(1) @ W)

(3) L ®L L

HL (K, A(G)(1)) ®, LW IW (K AHG) (1) @ W)

It is then immediate from the description of j that the diagram commutes, which
finishes the proof. O

Proof of Theorem 2.14. By Corollary 2.11 and Lemma 2.16, we have

v (g (1)) = ey (1),
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The action of ¢, is clearly compatible with corestriction, so we have a commutative
diagram

Hy, (K (fp%), W (1)) — Hi, (Koo, W(1))

L Ly

Hy, s(K (%), (W)(1)) — Hyy (Koo, W (1))
which implies that t.(ex(w)) = es(¢w), completing the proof. O

Lemma 2.17. Let V be any p-adic representation of Gal(K*°/Q). Then the re-
striction map induces an isomorphism

Hiy 5(Quo, V) — Hiy g(Koo, V) G210 /Q)

Proof. The restriction map is induced from the restriction maps on finite level,
which fit into the exact sequence

s
0 —-» Hl(Gal(Kn/Qn),VGal(K /Kn)) . Hé(@n"/)
Hé(Km V)Gal(K,,,/Qn) HQ(Gal(Kn/Qn), VGal(KS/Kn))_

Since Q, has characteristic 0, the higher cohomology groups of any Q,-linear rep-
resentation of the cyclic group of order 2 are zero. This gives the claim at each
finite level, and hence in the inverse limit. U

Let a be the unique nontrivial element of Gal(K s /Qoo)-

Lemma 2.18. We have a = i, where 0 is the unique element of Gal(Ko/K)
which acts on Qs as complex conjugation. In particular, d is of order 2.

Corollary 2.19. If « is the unique nontrivial element of Gal(K~/Qoo), then for
any w € W,
e (€co(w)) = 6 - exc(Lw).

Proof. As above, write & = d:. By Lemma 2.17, we have ¢* - ex(w) = eso(tw).
Hence ., (€co(w)) =0 - 1y (eso(w)) = 6 - €00 (Lw). O

2.3. The two-variable L-function of K. We recall the construction (originally
due to Yager | ]) of a two-variable p-adic L-function from the elliptic units.

Let p be one of the two primes of K above p. We choose an embedding K — @p
inducing the p-adic valuation on K. Then for any finite extension L/K, and any
Gal(K/K)-module M, we may define

=@ H (Ly, M) = H' (K, Ind} M).
alp
which is a Gal(L/K)-module. We also define

lew,p(K(fpoo)v M) - @Z;(La M)
L

where the limit is taken over finite extensions L/K contained in K (fp*°).

We now recall the theory of two-variable Coleman series, as introduced, under
certain additional hypotheses, by Yager | ], and generalized to the semi-local
situation here by de Shalit | , 8I1.4. 6] Let ¢ = (¢yn)n>0 be a compatible system
of p-power roots of unity in K ; and let F be the completion of K (fp™ ) with respect
to the prime 9 of K above P induced by our choice of embedding K < Qp,

(’) the ring of integers of F . (Thus (’)oo is a complete discrete valuation ring
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with maximal ideal generated by p, and its residue field is a finite extension of the
unique Z,-extension of F),.)

Proposition 2.20. There is a unique morphism of A(Gjpee )-modules
COIC : lew,p(K(fpoo)a Zp(l)) — Aéoo (Gfpx)

with the following property:
For each finite-order character n of Gype which is not unramified at p, we have

Col*(u)(n) = 7(0,Q) "' n(@)" | D (o) logy(uf,)

O’EGfpm

Here ¢ is the unique lifting of the arithmetic Frobenius of Gal(K(fp>°)/K) to
Gal(K (jp™°)/Koo), m is any integer such that n factors through the quotient Gypm =
Gal(K (fp™)/K), logy is the logarithm map

K(pmp — K",

and

T(n,¢) = > w(o) TG,

o €Gal(K (7p>°) (upn ) /K (7))

where n is the exact power of p dividing the conductor of 1.
Definition 2.21. We let
Lipee = Col* (e ) € One @z, Q(Gjpe).

Proposition 2.22. The element Ljp lies in Ag_(Gjp), and it coincides with
the measure p(fp) in | , Theorem 11.4.14].

Proof. We have (Na — [a]) - Ly € Ag_(Gjpe) for all a. Since the ideal generated
by Na — [a] for all integral ideals a coprime to 6f has height 2, this implies that

Lipee € Ag_(Gipee) (cf. | , 811.4.12]).
To show that the resulting measure coincides with de Shalit’s u(fp>°), we compare
the defining property of the map Col above with | , Theorem II.5.2]. For a

finite-order character n of Gy,n, whose conductor g is divisible by p and satisfies
Ok N (1+ g) = {1}, de Shalit shows that

(=) = —Gm) S () 1og ég(c),

129 ceCl(g)

where ¢ is the smallest rational integer in g, ¢4(c) is Robert’s invariant and the
quantity G(n) coincides with what we have called 7(n,¢)~1n($)". Since

(N(a) = [a])gg(c) = [c] - (aeq) ™,

this shows that the two measures coincide at every finite-order character, and hence
they are equal in Az _(Gypee). O

Note 2.23. If one identifies G(fp™) with the ray class group modulo fp*° wvia the
Artin map, normalized as in §1.3 above, then this measure coincides with the pull-
back of the Katz two-variable L-function of K (cf. | , §4]) up to a difference of
signs. This remark will be important in the proof of Theorem 3./ below.
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2.4. Kato’s zeta element. Let f = ) a,¢" be a modular form of CM type,
corresponding to a Grossencharacter ¢ of K with infinity-type (1 — k,0) where &
is the weight of f. It is clear that the coefficient field FF = Q(a, : m > 1) of f is
contained in the finite extension L/K contained in C generated by (K *).

Following [ , 86.3], we write S(f) and V(f) for the subspaces of the de
Rham and Betti cohomology of the Kuga—Sato variety attached to f. Note that
both of these are F-vector spaces, and S(f) is 1-dimensional over F while V (f)
is 2-dimensional. For a commutative ring A over F', define S,4(f) = S(f) ®r A
and Va(f) = V(f) ®r A. If X is a place of F above p, we may identify Vg, (f)
with the p-adic representation associated to f of Deligne | ] and S, (f) may
be identified with Fil' Deyis (Vi (f)).

Definition 2.24. Let x be a Dirichlet character of conductor p™. We define the
maps H;t’f by
s ¢+ S ®Qupr) — Ve()*

TRY > Ygeq, X(0)o(y)per(z)
where G, = Gal(Q(ppn)/Q), pery : S(f) — Ve(f) is the period map as defined
in | , §6.3] and v > vt is the projection from Vc(f) to its (1-dimensional)
+1-eigenspace for the complex conjugation.

+

Theorem 2.25 (| , Theorem 12.5(1)]). We have a Ly-linear map

Vi (f) — Hyy 5(Qu, VA(S))

Kato
O e 4 ZW

which satisfies the following. Let x be a Dirichlet character of conductor p™, v €
Vi(f) and 1 <r <k —1, then

0% ;0 exp” (25 @ (G)207) ) = (@m) Ly (1 xm) -7
where + = (—1)kF=""1y(-1).

Let § be an ideal of O satisfying the conditions in Theorem 2.2 which is con-
tained in the conductor of ¢. Let (E,a) be the canonical CM-pair over K(f).
Following [ , §15.8], we define V(1)) = H'(E(C),Q)®*) @k L and S()) =
HY(Gal(K (§)/K), coLie(E)®®*~1) @ L), where the action of Gal(K(f)/K) on the
space coLie(E)®* D@ g L is as described in op.cit.. Both of these are 1-dimensional
L-vector spaces. For any commutative ring A over L, we write V4 (¢) = VL (¢) Q1 A
and S4(v) = S(v) ®1 A. The Galois group Gal(K/K) acts on VL (¢) ®1 Ly via
1y, and there exists a period map

pery, : S(¢p) — Ve(¥)
induced by passing to the (k—1)-st tensor power from the comparison isomorphism
per., described above.

We now recall Kato’s results on the relation between this zeta element and the
elliptic units.

Lemma 2.26 ([ , Lemma 15.11]). Fiz a choice of isomorphism of L-vector
spaces

s:5() — S(f).

(a) There exists a unique isomorphism of representations of Gal(Q/Q) over Ly

Vi ($) — Vi, (f)

such that the isomorphism Sy, (¥) — Sp, (f) induced by the functoriality
of Dgr, is compatible with s.
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(b) There exists a unique isomorphism of representations of Gal(C/R) over L

P

V() — Vi(f)

for which the diagram

S) 22 Ve(w)
Sp(f) —te V()

commutes.

~

Note that the isomorphism of part (b) implies an isomorphism Vi, (¢p) —
Vi, (f) on extending scalars to Ly, but one does not know that this coincides
with the isomorphism of part (a), as remarked in | , §15.11].

Definition 2.27. We write ®y  for the canonical map
Hy,, (K (79%), Ve, () — Hiy, 5(Qoo, Ve, ()
as defined in | , (15.12.1)].
Concretely, this map can be defined as follows:
Hiy, s(K(10%), Vi, () — Hy(K,AYT) ® Vi, () —
HY(Q,Indf (A(1) © Vi, () —= H3(Q A (D) @ Vi, (f)-

Theorem 2.28. Let v € V() and write v’ for its image in VL(f) under the map
given by Lemma 2.26(b). Then we have

Dy f (eoo(v) ® (Cpn)®(f1)) _ z%y(/ato.
Proof. This is | , (15.16.1)]; it is immediate from a comparison the interpolat-
ing properties of the two zeta elements, since an element of H}, (Qe/Q, VL, (f)) is

uniquely determined by its images under the dual exponential maps at each finite
level in the tower Qu,/Q. O

Proposition 2.29. We have a commutative diagram

[0}
Hiy s(Koo, Vi, (4) 2L b 6(Quo, Vi ()

W

Hllw,S(KOm VLA (w) D LVLA W))a:l

where the left-hand vertical map sends x to x @ § - 1.(x), and the diagonal isomor-
phism is given by restriction.

Proof. Clear. O
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3. CRITICAL-SLOPE L-FUNCTIONS

Let f be a modular form of CM type, as above, and 1 the corresponding
Grossencharacter. We choose a basis v of V1, (v), and let 4/ be its image in Vi (f)
under the isomorphism of Lemma 2.26(b).

We fix an embedding K < Q, which induces the A-adic valuation on L. This
gives an embedding Gal(Q,/Q,) — Gal(K/Q), whose image is contained in the
subgroup Gal(K /K). This gives a localization map

IOCP : Hllw,S(QOO7 M) - Hllw(QI%OC’ M)
for each Gal(K*®/Q)-module M. Moreover, we have a map
locy : Hyy, 5(Koo, M) —+ Hyyy(Qp o0, M)

for each Gal(K*®/K)-module M, and we clearly have loc, = loc, ores qg.
Via the isomorphism of Lemma 2.26(a), the space VL, (f) is isomorphic as a rep-
resentation of Gal(Q,/Q,) to Vi, (¥) & ¢ (VL, (¢)). Note that + does not normalize

the image of Gal(Q,/Q,), so the two factors are non-isomorphic; indeed Vz, (¥)
has Hodge-Tate weight 1 — k, while ¢ (V7 (¢¥)) has Hodge—-Tate weight 0. Hence
we have

locy (25*°) € Hyyy(Qp,o0: Ve (¥)) & Hiy (Qpoe, t(Vi, (1))

Let us write pr; and pry for the projections to the two direct summands above.
By Corollary 2.28, the projection pry locp(sz,ato) to Hi, (Qp,o00, Vi, (¥)) is

locy (exe(7) ® (Gn)* V).

By Proposition 2.29, we see that the projection of locp(zf,ato) to the other direct
summand is

6 -locy 1. (€x0(7) @ ()Y )| = 5 Tocy (12 (eac (1)) @ (Gr)* 0.
We have

Lx (€00 (7)) = eoc (1Y),
so this simplifies to

pry (loc, 2572°) = 6 - [locy (oo (17))] ® (Gon) * Y.

Definition 3.1. Let L), € A(T') ®z, Deis(Vr, (¥)(k — 1)) and L} , € A(T) @z
Deris ¢V, (¥)(k — 1)) be the unique elements such that

Ly, (Hk-1) (ny{/ato ® (Cp")®(k71)> =Ly @ Ly,

D

We shall see below that if g = f is the complex conjugate of f, then L;)l will be
the ordinary p-adic L-function of g, and L;Q is the critical-slope p-adic L-function
of g.

Theorem 3.2. For every character n of I, we have

_oy—1 _
LY () = Lipee (n (¥ax*72) ) - 1571,
and

L7 5(0) = (Lo - by—2bLipee) (n (D55 2) ) - 07

Proof. For brevity, we shall write e; for ({,»)®7, considered as a basis vector of
Q())- |

It is easy to see that if { is a character of Gj,~ of the form x/7, where 7 is
unramified and 57 > 0, and V is any crystalline representation with non-negative
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Hodge-Tate weights, then for any = € H{, (K (fp™), V) and any choice of basis eg
of Q, (&) we have

LI (1@ ee)(n) = (bo- - 41)(n) - L7 (2) (™Y @t Ve
Note that if £ takes values in the finite extension L/Q,, this is an equality of two
elements of L ® ﬁoo ®@ Deyis(V(€)): the element t7eg € Beyis ®q, L(&) transforms
via 7 under G, , and hence lies in . ®Deyis(L(€)), since the periods of unramified

characters lie in Fi, C Bepis-
We apply this result with V' = Q, (the trivial representation), x = e~ ® e_1,
and various values of £. Firstly, taking £ to be the cyclotomic character, we have

—1 pGipoo
Lipe =€y Lg)11) (efp=),
and thus
G »nOO — —
(4) Lip= () = £57 (e @ e_1)(x 1) @ ¢ er.

On the other hand we have

Ly1(n) = Ly, (e (Pr1(25°°) ® ex—1)) ()

Gipoo
= ﬁVLfA(w)(kfl) (exc(7) ® €x—2) (1)

The group Gg, acts on Vi, ()(k — 1) via the unramified character x*~!¢,, so
this is

L)1 () = £ (eco @e—1) (X or,) ') @ (1) @ (' Fer1).
Comparing this with (4), we deduce that
LY () = Ly (X" 2¢0,)"'n) @ (*719) @ (£ "ex ).

If we identify Deyis(Qp(k — 2)) with @, in the usual way, t>~*ej_ is sent to 1. As
remarked above, the element t* =1~ € B ®q, VL, () lies in F. ®q, Deris (Vi (¥)).
So if w is a K-basis of S(¢), then the image of w under the crystalline comparison
isomorphism is a basis of Deis(Vz, (¢)), and if we define Q, = (v ® e1_x)/w, this
will lie in ﬁoo and our result becomes
L) 1(n) = Lipeo (X" 2¢0,) ') - Qpoo.
We now turn to L, ,. We have

Ly 2 () = Liv, ()1 (Pra(257°) @ e—1) ()

Gipoo
= ‘Cb(i/L)\(w))(kfl) ((6- e (7)) ® ex—2) (n)

—_ G oo
= (_1)k 27](5)'64{5“(1#))(16_1) (ecc(ty) ® ex—2) (1)

The group G, acts on +(Vz, (¢)) by the character v, which is unramified; so this
is

L) o) = (=) 2n(8) (o .. . tx—2)(n) -£S;P°° (oo @e—1) (X" "5) ')
@t Fer_1 ® 1y
= (<1 (0) (o lea)(0) - L (6 205,)7m) © 2 Fepg @ 07.

As above, we identify t>~Fe,_o € Deris(Qp(k — 2)) with 1 € Qp; and if w is a
basis of Sp,(¢), the image of (w under the comparison isomorphism is a basis of
Deris (1(V, (1)), so if we define Q) = (+7)/(ww) this becomes

L7 o(n) = (=1 2n(0)(by . . . l—2)(n) - Lipe ((*201,) ') - Q.



CRITICAL SLOPE P-ADIC L-FUNCTIONS OF CM MODULAR FORMS 13

Definition 3.3. Let w be a basis of Sp(¢) as above, and let L, o(g) and L, 5(g)
be the elements of Hr, (I') defined by

L;’l = Lp,a(g) tw

and

L;Q =L, s(9) - w.

Then Ly, o and Ly g are the p-adic L-functions attached to g, where a and 3 are
respectively the unit and non-unit roots of the Hecke polynomial of g.

As shown in | , §16], this is consistent with the classical Amice—Velu—Vishik
construction of the ordinary p-adic L-function L, (g), and thus it is natural to
regard L, 3(g) as a candidate for a critical-slope p-adic L-function. This is the
definition of the Kato critical-slope L-function used in [ ]

Theorem 3.4. Up to multiplication by two nonzero scalars, one for each sign,
L, 3(g) coincides with the modular symbol critical-slope L-function Lg/)[g (g9) attached
to the non-ordinary p-stabilization of f in | ].

Proof. This follows by comparing the formulae of Theorem 3.2 with Theorem 2 of
[ ]. Note that Bellaiche shows that if p; and py are the two characters by
which Gal(K/K) acts on V", then

{Lp,a(g)(n) = Ly (pan~!) - (constant®),
LMS(9)(n) = (fo-+ - Lx—2)(n) - Lypee (p1~") - (constant™).

Here constant® indicates an equality of distributions on I' up to multiplication by
two nonzero constants (one for each sign). On the other hand, we have proved that

Lpa(9)(n) =Ly (xp1 ') - (constant),
Lys(9)(n) = (bo--lk—2)(n) - Lyp=(xp3 'n) - (constant).

To reconcile these formulae, we note that the p-adic L-function Lj,~ satisfies a
functional equation | , §IL.6]

Lip=(1(n)) = C(n) - Lyp= (xn~ ),

for a function C(n) (involving a p-adic root number and various other correction
terms) which depends only on the coset of 77 modulo characters factoring through
Gal(Q%,/Q). Since t(p1) = p2 and vice versa, we deduce that

Ly.5(9) = L}'3(g) - (constant™).

Since the modular symbol L-function is only defined up to scalars, this completes
the proof. O

Note 3.5. Both Kato’s and Bellaiche’s critical-slope p-adic L-functions are only
defined up to multiplication by a nonzero constant for characters of each sign; in
Kato’s construction these constants correspond to the choice of v, whose projection
to each of the £+ eigenspaces of complex conjugation must be non-zero. It seems
natural to ask whether one can choose normalizations for both in a compatible fash-
ion so Theorem 3.4 holds exactly, but the present authors do not feel sufficiently
familiar with the modular symbol construction to comment further.
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