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Abstract. Let E be an elliptic curve over Q with good supersingular reduction at a prime p ≥ 3 and ap = 0.

We generalise the definition of Kobayashi’s plus/minus Selmer groups over Q(µp∞ ) to p-adic Lie extensions

K∞ of Q containing Q(µp∞ ), using the theory of (ϕ,Γ)-modules and Berger’s comparison isomorphisms.

We show that these Selmer groups can be equally described using the “jumping conditions” of Kobayashi

via the theory of overconvergent power series. Moreover, we show that such an approach gives the usual

Selmer groups in the ordinary case.

Contents

1. Introduction 2

2. Notation and background 3

2.1. Rings of periods 3

2.2. The Robba ring 5

2.3. The operator ψ 5

2.4. Tate twists 5

2.5. The Herr complex 5

3. The signed Selmer groups 6

3.1. Good supersingular elliptic curves 6

3.2. Good ordinary elliptic curves 7

4. An alternative definition of the signed Selmer groups 11

4.1. Preliminary results on B†K 11

4.2. The local conditions 12

4.3. Signed Selmer groups revisited 16

5. The supersingular MH(G)-conjecture 17

6. Difficulties 18

6.1. Analysis of Poitou-Tate exact sequences 18

6.2. The fundamental diagram 19

References 20

2000 Mathematics Subject Classification. 11R23,11G05.
The first author is supported by an ARC DP1092496 grant.
The second author is supported by EPSRC Postdoctoral Fellowship EP/F043007/1.

1



2 ANTONIO LEI AND SARAH LIVIA ZERBES

1. Introduction

Let E be an elliptic curve defined over Q with good supersingular reduction at a prime p ≥ 3 and

ap = 0. Kobayashi [Kob03] constructed two Λ-cotorsion Selmer groups Seli(E/Q(µ∞p )), i = 1, 2 (denoted by

Sel±(E/Q(µ∞p )) in op.cit.) by modifying the local condition at p in the definition of the usual Selmer group.

In this paper, we propose an analogous definition of signed Selmer groups Seli(E/K∞) of E over K∞ for

i = 1, 2, where K∞ is a p-adic Lie extension over Q which contains Q(µp∞).

The main idea of our construction is the use of Berger’s comparison isomorphism in [Ber02]. Let us first

recall the description of the signed Selmer groups Seli(E/Q(µp∞)) in terms of p-adic Hodge theory as given in

[LLZ10]. Let V = Qp⊗T where T = TpE is the Tate module of E at p, then V is a crystalline representation

of GQp , the absolute Galois group of Qp. We write N(T ) for the Wach module of T (c.f. [Ber03, Wac96]).

Then a result of Fontaine/Berger states that we have a canonical isomorphism H1
Iw(Qp, T ) ∼= N(T )ψ=1 (we

will identify these two objects throughout the paper). Let n± be the canonical basis of N(T ) as constructed

in the appendix of op.cit., and let v± be the induced basis of Dcris(V ). Via Berger’s comparison isomorphism,

any element x ∈ N(T )ψ=1 can be expressed in the form x = x1v
+ + x2v

− where xi ∈ B+
rig,Qp for i = 1, 2.

Define

H1
Iw(Qp, T )i =

{
x ∈ N(T )ψ=1 | ϕ(xi) = −pψ(xi)

}
,

and let H1(Qp(µpn), T )i be the image of H1
Iw(Qp, T )i under the natural projection map H1

Iw(Qp, T ) →
H1(Qp(µpn), T ). Define H1

f,i(Qp(µpn), Ep∞) to be the exact annihilator of H1(Qp(µpn), T )i under the Tate

pairing. One then defines Seli(E/Q(µpn)) by replacing the usual local condition H1
f (Qp(µpn), Ep∞) at the

unique prime of Q(µpn) above p by H1
f,i(Qp(µpn), Ep∞).

If F is an arbitrary finite extension of Qp, then H1
Iw(F, T ) is canonically isomorphic to DF (T )ψ=1, where

DF (T ) denotes the (ϕ,Γ)-module of T over the base field AF . Moreover, every element x ∈ DF (T ) can be

uniquely written as x = x1v
+ + x2v

− with xi ∈ B†rig,F . It therefore seems natural to make the following

definition: for i = 1, 2, let

H1
Iw(F, T )i =

{
x ∈ DF (T )ψ=1 | ϕ(xi) = −pψ(xi)

}
.

One can the repeat the above construction to define ‘new’ local conditions H1
f,i(F (µpn), Ep∞) for i = 1, 2.

If K is a finite extension of Q, this allows us to define signed Selmer groups Seli(E/K(µpn)) for i = 1, 2 and

for all n ≥ 0. By passing to the direct limit over n, we obtain the Selmer groups Seli(E/K∞). The details

of this construction is given in Section 3.1.

When E has good ordinary reduction at p, we have defined Seli(E/Q(µp∞)) for i = 1, 2 in [LLZ10] in

the same way as the good supersingular case. To justify the proposed definition of signed Selmer groups

over K∞, we show in Section 3.2 that on extending our construction to the good ordinary case, Sel2(E/K∞)

again agrees with the usual Selmer group Sel(E/K∞) for any finite extension K of Q.

In Section 4, we give a more explicit description of the local conditions we use to define the signed Selmer

groups in the supersingular case. If F is a finite extension of Qp, we write Fn = F (µpn). We define for a

large integer N , which depends on F ,

ÊiN (OFn) :=
{
x ∈ Ê(OFn) : TrFn/Fm x ∈ Ê(OFm−1

)) for all m ∈ SnN,i′ and TrFn/FN x = 0
}
,
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where

SnN,1′ = {m ∈ [N + 1, n] : m even};

SnN,2′ = {m ∈ [N + 1, n] : m odd}.

We show that if we define Sel
(i)
N (E/Kn) by replacing the local conditions at places above p in the definition

of Sel(E/Kn) by these “jumping conditions”, then for i = 1, 2 we have isomorphisms

Sel
(i)
N (E/K∞) ∼= Seli(E/K∞)

on taking direct limits.

In Section 5, we extend the definition of signed Selmer groups to p-adic Lie extensions and formulate a

MH(G)-conjecture, analogous to the one for the good ordinary case in [CFK+05]. Finally, we will explain

some of the difficulties we encountered when attempting to extract information on the conjecture in Section 6.

Acknowledgements. We would like to thank John Coates and David Loeffler for their interest, and the

latter for many helpful comments. Part of this paper was written while the authors were visiting the

University of Warwick; they would like to thank the number theory group for their hospitality.

2. Notation and background

Let F be a finite extension of Qp. Write RepZp(GF ) (resp. RepQp(GF )) for the category of finitely

generated Zp-modules (resp. finite-dimensional Qp-vector spaces) with a continuous action of GF .

For an integer n ≥ 1, we write Qp,n = Qp(µpn), Qp,∞ = lim−→Qp,n and Γ = Gal(Qp,∞/Qp). More generally,

if F is a finite extension of Qp, we write Fn = F (µpn), F∞ = lim−→Fn, HF = Gal(Qp/F∞) and ΓF = Gal(F∞/

F ). For T ∈ RepZp(GF ), define H1
Iw(F, T ) = lim←−H

1(Fn, T ) where the connecting maps are corestrictions

corn/m : H1(Fn, T )→ H1(Fm, T ) for n ≥ m. If V ∈ RepQp(GF ), let H1
Iw(F, V ) = H1

Iw(F, T )⊗ZpQp, where T

is a GF -invariant lattice of V . If G is a compact p-adic Lie group, we write Λ(G) = Zp[[G]] for its completed

group ring over Zp.
For a finite set S of primes of Q, let FS denote the maximal algebraic extension of Q unramified outside

S. For an extension K of Q contained in FS , we write GS(K) = Gal(FS/K).

2.1. Rings of periods. Let Qp be an algebraic closure of Qp, and write Cp for its p-adic completion. Let

OCp be its ring of integers. Define

Ẽ = lim←−
x→xp

Cp =
{

(x(0), x(1), . . . ) |
(
x(i+1)

)p
= x(i)

}
,

and let Ẽ+ =
{
x ∈ Ẽ | x(0) ∈ OCp

}
. If x = (x(i)) and y = y(i) are elements of Ẽ, define their sum and

product by

(xy)(i) = x(i)y(i)

(x+ y)(i) = lim
n→+∞

(
x(i+n) + y(i+n)

)pn
.

Under these operations, Ẽ is an algebraically closed field of characteristic p. Note that by construction Ẽ is

equipped with a continuous action of GQp . Define a valuation on Ẽ by vẼ(x) = vp(x
(0)). Let ε = (ε(i)) be a

fixed element of Ẽ such that ε(0) = 1 and ε(1) 6= 1, and let π = ε − 1. Let EQp = Fp((π)), and define Ẽ to
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be a separable closure of EQp in E. Then E is equipped with a continuous action of GQp , and one can show

that EHQp = EQp .

Let Ã = W (Ẽ) be the ring of Witt vectors of Ẽ and

B̃ = Ã[p−1] =

{ ∑
k�−∞

pk[xk] | xk ∈ Ẽ

}
,

where [x] denotes the Teichmüller lift of x ∈ Ẽ. By construction, both rings are equipped with continuous

semi-linear actions of a Frobenius operator ϕ and GQp . Let π = [ε] − 1 and q = ϕ(π)/π, and define AQp

to be the completion of Zp[[π]][π−1] in the p-adic topology. Then AQp is closed under the actions of ϕ and

GQp , and moreover the action of GQp factors through ΓQp . Let B be the p-adic completion of the maximal

unramified extension of BQp = AQp [p−1] in B̃, and let A = B ∩ Ã. These rings are stable under the actions

of ϕ and GQp . For a finite extension F of Qp, put AF = AHF . If F∞ is Galois over Qp, then AF is equipped

with a continuous action of GF which commutes with ϕ.

For a p-adic representation T ∈ RepZp(GQp) (resp. V ∈ RepQp(GQp)), define DF (T ) = (A ⊗Zp T )HF

(resp. DF (V ) = (B ⊗Qp V )HF ). Then DF (T ) (resp. DF (V )) is a free finitely generated module over AF
of rank d = rankZp(T ) (resp. a finite dimensional vector space over BQp of dimension d = dimQp(V )),

equipped with commuting semi-linear actions of ϕ and ΓF . Note that DF (T ) = DQp(T ) ⊗AQp
AF (resp.

DF (V ) = DQp(V )⊗BQp
BF ).

Remark 2.1. If F∞ is Galois over Qp, then the action of ΓF extends to an action of GF = Gal(F∞/Qp).

Moreover, the action of GF commutes with the action of ϕ.

Every element x ∈ B̃ can be written uniquely of the form x =
∑
k�−∞ pk[xk] with xk ∈ Ẽ. For an integer

n ≥ 0, define

B̃†,n =

{
x ∈ B̃ | lim

k→+∞

(
k + p−nvẼ(xk)

)
= +∞

}
and let B†,n = B̃†,n ∩ B and B†,nF =

(
B†,n

)HF
for any finite extension F of Qp. Also, let Ã†,n = {x ∈

B̃†,n ∩ Ã | k+ p−nvẼ(xk) ≥ 0 for all k}, A†,n = Ã†,n ∩A and A†,nF =
(
A†,n

)HF
. Finally, define B† =

⋃
n B†,n,

A† =
⋃
n A†,n, B†F =

⋃
n B
†,n
F and A†F =

⋃
n A
†,n
F . Explicitly, one can describe the ring A†,nF for n � 0

as follows (c.f. [Ber02, Proposition 1.4]): there exists NF > 0 and πF ∈ A†,NFF whose reduction mod p is a

uniformizer πF of EF . Moreover, if n ≥ NF , then every element x ∈ B†,nF can be written as
∑
k∈Z akπ

k
F , where

the ak are elements in the maximal unramified extension F ′ of Qp in F∞, and where the series
∑
k∈Z akX

k

is holomorphic and bounded on the annulus p−1/eF p
n−1(p−1) ≤| X |< 1.

Let F be a finite extension of Qp. For V ∈ RepQp(GQp), define D†,rF (V ) =
(
B†,r ⊗Qp V

)HF
and D†F (V ) =(

B† ⊗Qp V
)HF

. Note that D†F (V ) = D†Qp(V ) ⊗B†Qp
B†F . The main result of [CC98] shows that every p-adic

representation V of GQp is overconvergent, i.e. there exists r(V ) > 0 such that

DQp(V ) = BQp ⊗B†,r(V )
Qp

D†,r(V )(V ).

If V is a crystalline representation of GQp , then a stronger result is true: V is of finite hight, i.e. let

B̃+ = W (Ã+)[p−1], B+ = B ∩ B̃+ and B+
Qp = (B+)HQp , and define D+

Qp(V ) = (B+ ⊗Qp V )HQp . Then

DQp(V ) = D+
Qp(V )⊗B+

Qp
BQp .
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2.2. The Robba ring. We write B+
rig,Qp for the set of f(π) where f(X) ∈ Qp[[X]] converges everywhere

on the open unit p-adic disc. In particular, t = log(1 + π) ∈ B+
rig,Qp . Let F be a finite extension of Qp.

For n ≥ 0, define B†,nrig,F to be the completion of B†,nF in the Fréchet topology, and define the Robba ring

B†rig,F =
⋃
n B
†,n
rig,F . By [Ber02, Lemme 3.13] we have

B†,nrig,F = B†,nrig,Qp ⊗B†,nQp
B†,nF .

By [Ber03, Proposition I.3], we can identify B†,nrig,Qp with the ring of power series

B†,nrig,Qp =
{
f(π) | f(X) ∈ Qp{{X}} converges for p−1/p

n−1(p−1) ≤| X |< 1
}
.

Note that the actions of ϕ and ΓF extend to B+
rig,F and B†rig,F .

The most important application of B†rig,F is Berger’s comparison isomorphism: if V is a crystalline rep-

resentation of GF , we write Dcris(V ) and N(V ) for the Dieudonné module and the Wach module of V

respectively, then there is a canonical isomorphism

(1) ι : D†F (V )⊗B†F
B†rig,F [t−1] ∼= Dcris(V )⊗Fnr B†rig,F [t−1]

which is compatible

Seli(E/L∞) = ker

(
H1(GS(L∞), Ep∞)→

⊕
v∈S

J iv(L∞)

)
.

with the actions of GF and ϕ. If V is a crystalline representation of GQp , then we indeed have a comparison

isomorphism

ι : N(V )⊗B+
Qp

B+
rig,Qp [t−1] ∼= Dcris(V )⊗Qp B

+
rig,Qp [t−1].

2.3. The operator ψ. Note that the extension E over ϕ(E) is inseparable of degree p. One can hence define

a left inverse ψ of ϕ on A. Explicitly, a basis of A over ϕ(A) is given by 1, 1 + π, . . . , (1 + π)p−1. For x ∈ A,

we may write x =
∑p−1
i=0 ϕ(xi)(1 + π)i where xi ∈ A. We set ψ(x) = x0.

If F is a finite extension of Qp and V ∈ RepZp(GF ) or RepQp(GF ), then ψ extends to a left inverse of ϕ

DF (V ). If F∞ is Galois over Qp, then by Remark 2.1 we have an action of GF on DF (T ) which commutes

with ϕ and hence with ψ.

2.4. Tate twists. Let F be a finite extension of Qp. We write χ for the p-cyclotomic character of GF .

If m is an integer and V ∈ RepQp(GF ) (resp. T ∈ RepZp(GF )), we denote by V (m) (resp. T (m)) the

GF -representations V ⊗Qp Qp · em (resp. T ⊗Zp Zp · em) where GF acts on em via χm. In particular, we have

Dcris(V (m)) = Dcris(V )⊗ t−mem, N(T (m)) = N(T )⊗ π−mem and N(V (m)) = N(V )⊗ π−mem.

2.5. The Herr complex. We first review some results from p-adic Hodge theory. Let F be a finite extension

of Qp. Let T ∈ RepZp(GQp). Recall the following result from [Her98] (see also [CC99, §2]). Let γ be a

topological generator of ΓF . For f = ϕ or ψ, define the complex

C•f,γ
(
DF (T )

)
: 0→ DF (T )

αf- DF (T )⊕ DF (T )
βf- DF (T )→ 0,

where αf (x) =
(
(γ− 1)x, (f − 1)x

)
and βf (x, y) = (f − 1)x− (γ− 1)y. Denote by Hi

(
C•f,γ(DF (V ))

)
the i-th

cohomology group of the complex.
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Theorem 2.2. For f = ϕ or ψ, Hi
(
C•f,γ(DF (T ))

)
is canonically isomorphic to Hi(F, T ). In particular, if

(x, y) ∈ DF (T )⊕2 satisfies βϕ(x, y) = 0, then the corresponding cohomology class in H1(F, T ) is given by the

cocycle

c(x,y) : σ 7→ σ − 1

γ − 1
x− (σ − 1)z,

where z ∈ A⊗Zp T is such that (ϕ− 1)z = y.

Theorem 2.3. We have an Λ(ΓF )-equivariant isomorphism H1
Iw(F, T ) ∼= DF (T )ψ=1. If F∞ is Galois over

Qp, then the isomorphism is compatible with the action of G = Gal(F∞/Qp).

Proof. See [CC99, Théorème II.1.3]. �

From now on, we will identify H1
Iw(F, T ) with DF (T )ψ=1 under the isomorphism given by Theorem 2.3.

3. The signed Selmer groups

Let E be an elliptic curve defined over Q, and fix a prime p ≥ 3. In this section, we use the theory of (ϕ,Γ)-

modules to define signed Selmer groups Seli(E/L(µp∞)) for any number field L, when E has either good

supersingular or good ordinary reduction at p. If E has good ordinary reduction at p, then Theorem 3.15

shows that Sel2(E/L∞) agrees with the usual Selmer group Sel(E/L∞).

3.1. Good supersingular elliptic curves. Assume throughout this section that ap = 0. Let Tp(E) be

the Tate module of E at p and write V = TpE ⊗Zp Qp, so as a representation of GQp , V is crystalline with

Hodge-Tate weights 0, 1. Let v1 be a basis of Fil0 Dcris(V ), and extend it to a basis v1, v2 of Dcris(V ) such

that the matrix of ϕ on Dcris(V ) in this basis is

(
0 −1

p 0

)
.

Define log−(1 + π) =
∏
i≥0

ϕ2i(q)
p and log+(1 + π) =

∏
i≥0

ϕ2i+1(q)
p , which are elements of B+

rig,Qp . Since

the Hodge-Tate weights of V are non-negative, we have

N(T ) ⊂ Dcris(V )⊗ B+
rig,Qp

by [Ber03, Proposition II.2.1], and it follows form Appendice (3) in op.cit. that a basis n1, n2 of N(T ) is

given by

(
n1

n2

)
= M

(
v1

v2

)
, where

(2) M =

(
log−(1 + π) 0

0 log+(1 + π)

)
.

Let K be a finite extension of Qp. For x ∈ D†K(T )ψ=1, we write

x = x1v1 + x2v2 = x′1n1 + x′2n2

with xi ∈ B†,Nrig,K and x′i ∈ A†,NK . By (2), we have

(3) x1 = x′1 log−(1 + π) and x2 = x′2 log+(1 + π).

Definition 3.1. For i = 1, 2, let

H1
Iw(K,T )i =

{
x ∈ D†K(T )ψ=1 : ϕ(xi) = −pψ(xi)

}
.
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For n ≥ 1, define H1(Kn, T )i to be the image of H1
Iw(K,T )i under the natural projection map H1

Iw(K,T )→
H1(Kn, T ).

Remark 3.2. As show in [LLZ10, §5.2.1], we have H1
Iw(Qp, T )i = H1

Iw(Qp, T ) ∩ ker(Coli) for the Coleman

maps

Coli : H1
Iw(Qp, T ) - Λ(Γ)

defined in op.cit.

Definition 3.3. Let H1
f,i(Kn, Ep∞) be the orthogonal complement of H1(Kn, T )i under the Pontryagin

duality

[∼,∼] : H1(Kn, T )×H1(Kn, Ep∞) - Qp/Zp

for i = 1, 2.

We now return to the global situation. As above, let L be a finite extension of Q. For a prime ν of L,

denote by Lν be the completion of L at ν, and let Lν,n = Lν(µpn). Let S be the finite set of primes of Q
containing p, all the primes where E has bad reduction and the infinite prime. Let i = 1, 2. For all v ∈ S,

define

J iv(Ln) =
⊕
wn|v

H1(Lwn,n, Ep∞)

H1
f,i(Lwn,n, Ep∞)

,

where the direct sum is taken over all primes wn of Ln above v and H1
f,i(Lwn,n, Ep∞) = H1

f (Lwn,n, Ep∞)

whenever v 6= p. We write J iv(L∞) = lim−→ J iv(Ln).

Definition 3.4. For i = 1, 2, define

Seli(E/L∞) = ker

(
H1(GS(L∞), Ep∞) -

⊕
v∈S

J iv(L∞)

)
.

For n ≥ 0, we also define

Seli(E/Ln) = ker

(
H1(GS(Ln), Ep∞) -

⊕
v∈S

J iv(Ln,v)

)
.

Taking direct limits then gives

Seli(E/L∞) = lim−→ Seli(E/Ln).

3.2. Good ordinary elliptic curves. In this section, let E be an elliptic curve defined over Q with good

ordinary reduction at a prime p ≥ 3. As above, let S be the finite set of primes of Q containing p, all the

primes where E has bad reduction and the infinite prime.

3.2.1. Coleman maps and signed Selmer groups. We first recall our construction of the signed Selmer groups

from [LLZ10]. Let ν̄1, ν̄2 and n̄1, n̄2 be the bases of Dcris(V (−1)) and N(V (−1)), respectively, as defined in

[LLZ10, §3.2]. In particular, if Ê denotes the formal group of E and V̂ = TpÊ ⊗Zp Qp, then ν̄1 is a basis

vector of Dcris(V̂ (−1)) and n̄1 = ν̄1 is a basis of N(V̂ (−1)). If M ′ is the change of basis matrix with

(4)

(
ν̄1

ν̄2

)
= M ′

(
n̄1

n̄2

)
,
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then M ′ is lower triangular, with 1 and t
π on the diagonal. If x ∈ N(V ), then there exist unique x1, x2 ∈ B+

Qp
such that x = (x1n̄1 + x2n̄2)⊗ π−1e1. By (4), we can find unique x′1, x

′
2 ∈ B+

rig,Qp such that

(5) x = (x′1ν̄1 + x′2ν̄2)⊗ t−1e1

with x′2 = x2. If P denotes the matrix of ϕ with respect to the basis n̄1, n̄2, then P is upper-triangular. Let

α be the unit root of the polynomial X2 − apX + p, then P is in fact of the form

P =

(
α ?

0 uq

)
for some u ∈ (B+

Qp)× which is congruent to α−1 mod π.

In [LLZ10], we have defined two pairs of Coleman maps (with respect to the chosen basis),

Coli : N(V )ψ=1 - (B+
Qp)ψ=0, and

Coli : N(V )ψ=1 - ΛQp(Γ)

for i = 1, 2 with the following properties: for x ∈ N(V )ψ=1, write x = (x1n̄1 + x2n̄2) ⊗ π−1e1 where

x1, x2 ∈ B+
Qp . Then

(1− ϕ)(x) =
(

Col1(x) Col2(x)
)
M

(
ν̄1

ν̄2

)
⊗ t−1e1(6)

=
(

Col1(x) Col2(x)
)
· [(1 + π)M ]

(
ν̄1

ν̄2

)
⊗ t−1e1(7)

where M = t
πqP

T (M ′)−1.

Definition 3.5. Let H1(Qp,n, T )i be the image of ker(Coli)∩N(T )ψ=1 under the natural maps N(T )ψ=1 →
H1

Iw(Qp, T ) → H1(Qp,n, T ) and write H1
f,i(Qp,n, Ep∞) for the exact annihilator of H1(Qp,n, T )i under the

Tate pairing.

If E is defined over Q, we can then define the signed Selmer groups Seli(E/Q(µp∞)) analogously to the

construction when E is supersingular at p.

Definition 3.6. Define

Seli(E/Q(µpn)) = ker

(
Sel(E/Q(µpn))→ H1(Qp(µpn), Ep∞)

H1
f,i(Qp(µpn), Ep∞)

)

)
where Sel(E/Q(µpn)) denotes the usual Selmer group and we define Seli(E/Q(µp∞)) to be the direct limit of

Seli(E/Q(µpn)).

We now show that on choosing an appropriate basis, we can describe ker(Col2) in a manner similar to

the good supersingular case (c.f. Remark 3.2).

Lemma 3.7. We can choose n̄2 such that u = α−1.
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Proof. If we let n̄′1 = n̄1 and n̄′2 = vn̄2 where v ∈ (B+
Qp)×, then n̄′1, n̄

′
2 is also a basis of N(V (−1)). The

matrix of ϕ with respect to this basis is of the form

P ′ =

(
α ?

0 v−1ϕ(v)uq

)
.

Note that αu ≡ 1 mod π implies that ϕn(αu) → 1 as n → ∞. In particular, the product
∏
n≥0 ϕ

n(αu)

converges to an element u′ ∈ (B+
Qp)×. Since u′ϕ(u′)−1 = αu, we deduce that P ′ is of the required form if we

take v = u′. �

Lemma 3.8. With respect to the basis given by Lemma 3.7,

ker(Col2) =
{
x ∈ N(V )ψ=1|ϕ(x2) = αx2 where x = (x1n̄1 + x2n̄2)⊗ π−1e1 with xi ∈ B+

Qp

}
.

Proof. By (6), we have Col2(x) = αx2 − ϕ(x2). Moreover, M is lower triangular with α t
πq and α−1 on the

diagonal. Therefore, ker(Col2) = ker(Col2) and we are done. �

Corollary 3.9. With respect to the basis given by Lemma 3.7,

ker(Col2) =
{
x ∈ N(V )ψ=1|ϕ(x2) = αx2 where x = (x1ν̄1 + x2ν̄2)⊗ t−1e1 with xi ∈ B+

rig,Qp

}
.

Proof. This follows from Lemma 3.8 and (5). �

Let L be a finite extension of Q, and let L∞ = L(µp∞). Using Corollary 3.9, we define Sel2(E/L∞)

as follows. Let ν be a prime of L above p. If x ∈ D†Lν (T )ψ=1 then we can use Berger’s comparison

isomorphism (1) we can write x = (x1ν̄1 + x2ν̄2) ⊗ t−1e1 with xi ∈ B†rig,Lν as in the supersingular case.

Define

H1
Iw(Lν , T )2 =

{
x ∈ DLν (T )ψ=1|ϕ(x2) = αx2

}
and H1(Lν,n, T )2 is defined to be the projection of H1

Iw(Lν , T )2 in H1(Lν,n, T ). Let H1
f,2(Lν,n, Ep∞) be the

exact annihilator of H1
Iw(Lν , T )2.

Definition 3.10. For all v ∈ S, define

J2
v (Ln) =

⊕
wn|v

H1(Lwn,n, Ep∞)

H1
f,2(Lwn,n, Ep∞)

,

where the direct sum is taken over all primes wn of Ln above v. Here, H1
f,2(Lwn,n, Ep∞) = H1

f (Lwn,n, Ep∞)

whenever v - p. Define J2
v (L∞) = lim−→ J

(2)
v (Ln). Define

Sel2(E/L∞) = ker

(
H1(GS(L∞), Ep∞)→

⊕
v∈S

J2
v (L∞)

)
.

3.2.2. Properties of Sel2(E/L∞). Let us now study the groupH1
Iw(Lν , T )2 a bit further. To simplify notation,

let K = Lν .

Lemma 3.11. Let a ∈ Z×p , and assume that a is not a root of unity. If x ∈ B†rig,K satisfies

(8) ax− ϕ(x) = 0

then x = 0.
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Proof. If x ∈ B+
rig,Qp , then we can substitute π = et − 1 to write x of the form

∑
n≥0 cnt

n with cn ∈ Qp.
Since ϕ(t) = pt, it is clear from this description that for any a 6= 1 and x 6= 0, we have ϕ(x) 6= ax.

Let x ∈ B†rig,Qp − B+
rig,Qp . Assume that there exists n ≥ 0 be such that x ∈ B†,nrig,Qp and x 6∈ B†,n−1rig,Qp . Then

ϕ(x) ∈ B†,n+1
rig,Qp − B†,nrig,Qp , so ϕ(x) 6= ax.

If x ∈ B†,nrig,Qp for all n ≥ 0 and x 6∈ B+
rig,Qp , then ϕ−1(x) converges in B+

dR, so if we write x = f(π), then

f(T ) does not have a pole at ε(1) − 1. But f(T ) has a pole at T = 0 as x 6∈ B+
rig,Qp , so f

(
(T + 1)p − 1

)
has

poles at the {(ε(1))i − 1 : 0 ≤ i < p}. Hence ϕ(x) 6= ax.

Assume now that x ∈ B†rig,K satisfies ϕ(x) = ax, and that x 6∈ B†rig,Qp . On replacing K by its Galois

closure, if necessary, we may assume that K/Qp, and hence K∞/Qp,∞, are Galois. Let H = Gal(K∞/

Qp,∞). Since ϕ is H-equivariant, σ(x) also satisfies (8) for all σ ∈ H. More generally, if σ1, . . . , σi ∈ H, then

y = σ1(x2) . . . σi(x2) satisfies aiy = ϕ(y). The coefficients of the polynomial

f(Y ) =
∏
σ∈H

(Y − σ(x))

are elements in B†rig,Qp which satisfy an equation of the form (8), so they must all be zero by the above

argument. But the minimal polynomial of x over B†rig,Qp divides f(Y ), which gives a contradiction. �

Remark 3.12. The unit root α of the polynomial X2−apX + p is a Weil number of complex absolute value
√
p, so it cannot be a root of unity.

Proposition 3.13. Let x ∈ D†Kν (V )ψ=1, and write x = (x1ν̄1 + x2ν̄2) ⊗ t−1e1 with xi ∈ B†rig,Qp . Then

x ∈ H1
Iw(Kν , T )2 if and only if x2 = 0.

Proof. Immediate from Lemma 3.11 and Remark 3.12. �

Corollary 3.14. x ∈ H1
Iw(K,T )2 if and only if x ∈ DK(T̂ )ψ=1.

Proof. It follows immediately from the comparison isomorphism and the fact that ν̄1 = n̄1 that any x ∈
DK(T )ψ=1 which satisfies ι(x) = x1ν̄1 ⊗ t−1e1 must indeed lie in DK(T̂ ). �

We can now conclude this section with the following theorem.

Theorem 3.15. We have Sel(E/L∞) = Sel2(E/L∞).

Proof. Since L/Q is finite and E had good ordinary reduction at p, we have V HLν = 0 for all primes ν of L

above p. This implies that

H1
Iw(Lν , T̂ )⊗Zp Qp = lim

←
H1
g (Lν,n, T )⊗Zp Qp

by [PR00, Proposition 0.1] (or [Ber05, Theorem A]). But H1
f (Lν,n, T ) = H1

g (Lν,n, T ) by [BK90, (3.11.2)]),

we have

H1
Iw(Lν , T̂ )⊗Zp Qp = lim

←
H1
f (Lν,n, T )⊗Zp Qp.

It is clear that the quotients DK(T )ψ=1/DK(T̂ )ψ=1 and H1(Lν,n, T )/H1
f (Lν,n, T ) are torsion-free over Zp.

We can therefore deduce that

H1
Iw(Lν , T̂ ) = lim

←
H1
f (Lν,n, T ).

On taking Pontryagin duals, we have J2
ν (L∞) = Jν(L∞), which finishes the proof. �
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4. An alternative definition of the signed Selmer groups

Let E be an elliptic curve defined over Q with good supersingular reduction at a prime p ≥ 3 such that

ap = 0, and let L be a finite extension of Q. The main result of this section is Proposition 4.18 below,

which shows that the local conditions at the primes above p in the definition of the signed Selmer groups

Seli(E/L∞) using some “jumping conditions” similar to those introduced in [Kob03].

4.1. Preliminary results on B†K . Let K be a finite extension of Qp, and let K ′ be the maximal unramified

extension of Qp contained in K∞. It is easy to see from the description of the ring A†,nK given in Section 2.1

that it is complete in the p-adic topology.

Lemma 4.1. For all n ≥ NK , A†,nK is the p-adic completion of OK′ [[πK ]][π−1K ] ∩ A†,nK .

Proof. Note that the condition that
∑
k∈Z akX

k is holomorphic and bounded above by 1 on the annulus

p−1/eKp
n−1(p−1) ≤| X |< 1 is equivalent to the condition that

vp(ak) +
k

eK(p− 1)pn−1
≥ 0 and → +∞ as k → −∞.

�

Lemma 4.2. Let x ∈ A†,NK where N ≥ NK . If θ ◦ ϕ−n(x) = 0 for infinitely many n ≥ N , then x = 0.

Proof. Firstly, we assume that x ∈ OK′ [[πK ]][π−1K ]. We write σ for the Frobenious in Gal(K ′/Qp). Let

F (X) =
∑
m≥−r

bmX
m ∈ OK′ [[X]][X−1]

such that F (πK) = x. For i = 1, . . . , [K ′ : Qp], write

Fi(X) =
∑
m≥−r

σi(bm)Xm.

Then θ ◦ϕ−n(x) = Fi(πn), where i+n ≡ 0 mod [K ′ : Qp] and πn = θ ◦ϕ−n(πK). Therefore, there exists an

i such that Fi has infinitely many zeros. But Fi ∈ X−rOK′ [[X]], so Fi = 0 by the Weierstrass preparation

theorem. This implies that bm = 0 for all m, so x = 0.

To conclude, note that if n ≥ N , {x ∈ A†,NK : θ ◦ ϕ−n(x) = 0} is a closed set of A†,NK under the p-adic

topology and A†,NK is the p-adic completion of OK′ [[πK ]][π−1K ] ∩ A†,NK by Lemma 4.1. �

Lemma 4.3. Let n� 0 and x ∈ B†,nK , then

TrKn/Kn−1
◦θ ◦ ϕ−n(x) = θ ◦ ϕ−n ◦ TrB/ϕ(B)(x).

Proof. We let n be an integer such that [Kn : Kn−1] = p and n ≥ a(K) + 1 where a(K) is the integer as in

[CC99, Proposition III.2.1]. Write

x =

p−1∑
i=0

[ε]iϕ(xi)

where xi ∈ B†,n−1K . Then,

θ ◦ ϕ−n+1(xi) ∈ Kn−1
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for all i. Therefore,

TrKn/Kn−1
◦θ ◦ ϕ−n(x) = TrKn/Kn−1

(
p−1∑
i=0

ζipnθ ◦ ϕ1−n(xi)

)
= pθ ◦ ϕ1−n(x0).

But we have TrB/ϕ(B)(x) = pϕ(x0), which finishes the proof. �

4.2. The local conditions. Write D†K(T ) for the overconvergent (ϕ,Γ)-module of T over K. It is clear

from the definition that

D†K(T ) = A†K ⊗A+
Qp

N(T ),

so in particular the basis n1, n2 of N(T ) given in Section 3.1 is a basis of D†K(T ) over A†K .

As shown in [CC99, Proposition III.3.2], we have D†K(T )ψ=1 ⊂ D†,NK (T ) for N ≥ N(K,V ). Fix such an

N ; note that it is not uniquely defined. Let x ∈ D†K(T )ψ=1. Then as in Section 3.1, we can write

x = x1v1 + x2v2 = x′1n1 + x′2n2

with xi ∈ B†,Nrig,K and x′i ∈ B†,NK for i = 1, 2.

Lemma 4.4. Let x ∈ D†K(T )ψ=1, then

TrKn/Kn−1
◦θ ◦ ϕ−n(x1) = −θ ◦ ϕ2−n(x1)

for all odd integers n ≥ N + 2 and

TrKn/Kn−1
◦θ ◦ ϕ−n(x2) = −θ ◦ ϕ2−n(x2)

for all even integers n ≥ N + 2.

Proof. By definitions, we have ϕ(log+(1 + π)) = p
q log−(1 + π) and ϕ(log−(1 + π)) = log+(1 + π), and that

similar relations hold when replacing ϕ by ψ. The relations (3) therefore imply that

ϕ(x1) + pψ(x1) = (ϕ(x′1) + ψ(qx′1)) log+(1 + π);(9)

ϕ(x2) + pψ(x2) = (ϕ(x′2) + qψ(x′2)) p/q log−(1 + π).(10)

If n ≥ 2 is an even integer, then θ ◦ ϕ−n
(
log+(1 + π)

)
= 0. Therefore, (9) implies that

θ ◦ ϕ−n+1(x1) + θ ◦ ϕ−n−1 (pϕ ◦ ψ(x1)) = 0.

Recall that pϕ ◦ ψ = TrB/ϕ(B), so Lemma 4.3 implies the first part of the lemma. Similarly, the second half

the lemma follows from (10) and the fact that

θ ◦ ϕ−n
(
p/q log−(1 + π)

)
= 0

for all odd integers n ≥ 3. �

Proposition 4.5. Let x ∈ D†K(T )ψ=1, then x ∈ H1
Iw(K,T )i if and only if

TrKn/Kn−1
◦θ ◦ ϕ−n(xi) = −θ ◦ ϕ2−n(xi)

for all n ≥ N + 2.
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Proof. If x ∈ H1
Iw(K,T )i, then

ϕ2(xi) = −pϕ ◦ ψ(xi) = −TrB/ϕ(B)(xi).

On applying θ ◦ ϕ−n to both sides, we have by Lemma 4.3 that

θ ◦ ϕ2−n(xi) = −TrKn/Kn−1
◦θ ◦ ϕ−n(xi)

as required.

Conversely, we assume that

TrKn/Kn−1
◦θ ◦ ϕ−n(xi) = −θ ◦ ϕ2−n(xi)

for all n ≥ N + 2. Then θ ◦ ϕ−n (ϕ(xi) + pψ(xi)) = 0 by Lemma 4.3. Our assumption implies that

ϕ(x′1) + ψ(qx′1) = 0 for i = 1 and ϕ(x′2) + qψ(x′2) = 0 for i = 2 by Lemma 4.2 and the equations (9) and

(10). Therefore, we have x ∈ H1
Iw(K,T )i as required. �

Remark 4.6. By Lemma 4.4, we can rewrite Proposition 4.5 as follows:

H1
Iw(K,T )1 =

{
x ∈ D†K(T )ψ=1 : TrKn/Kn−1

◦θ ◦ ϕ−n(x1) = −θ ◦ ϕ2−n(x1) for all even n ≥ N + 2
}

;

H1
Iw(K,T )2 =

{
x ∈ D†K(T )ψ=1 : TrKn/Kn−1

◦θ ◦ ϕ−n(x2) = −θ ◦ ϕ2−n(x2) for all odd n ≥ N + 2
}
.

We can now describe H1
Iw(K,T )i as follows.

Corollary 4.7. We have

H1
Iw(K,T )1 =

{
x ∈ DK(T )ψ=1 : exp∗Kn ◦h

1
Iw,n(x) ∈ Kn−1 · v1 for all odd n ≥ N + 1

}
,

H1
Iw(K,T )2 =

{
x ∈ DK(T )ψ=1 : exp∗Kn ◦h

1
Iw,n(x) ∈ Kn−1 · v1 for all even n ≥ N + 1

}
.

Proof. By [CC99, Théorème IV.2.1],

exp∗Kn ◦h
1
Iw,n(x) = ∂V ◦ ϕ−n(x)

for all n ≥ N . Since

∂V ◦ ϕ−n(x) = θ ◦ ϕ−n(x1)ϕ−n(v1) + θ ◦ ϕ−n(x2)ϕ−n(v2)

and the image of exp∗Kn lies in Kn ⊗ Fil0Dcris(V ), it follows that

exp∗Kn ◦h
1
Iw,n(x) =

(−1)mp−mθ ◦ ϕ−2m(x1)v1 if n = 2m ≥ N,

(−1)mp−mθ ◦ ϕ−(2m+1)(x2)v1 if n = 2m+ 1 ≥ N.

Extend the trace map TrKn/Kn−1
to the map TrKn/Kn−1

◦id on Kn ⊗Qp Dcris(V ). Then, x ∈ H1
Iw(K,T )1 if

and only if

TrKn/Kn−1
◦ exp∗Kn ◦h

1
Iw,n(x) = p−1 exp∗Kn−2

◦h1Iw,n−2(x)

for all even n ≥ N + 2. But

TrKm/Km−1
◦ exp∗Km = exp∗Km−1

◦corKm/Km−1

for all m ≥ 0, so we deduce that x ∈ H1
Iw(K,T )1 if and only if

exp∗Kn−1
◦h1Iw,n−1(x) = p−1 TrKn−1/Kn−2

◦ exp∗Kn−1
◦h1Iw,n−1(x)
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for all even n ≥ N − 2. �

As a important consequence, we can characterise H1
Iw(K,T )i completely in terms of the conditions on the

finite levels:

Corollary 4.8. For i ∈ {1, 2} and n ≥ N + 1, define

H1
N (Kn, T )(i) =

{
x ∈ H1(Kn, T ) : TrKn/Km ◦ exp∗Kn(x) ∈ Km−1 · v1 for all m ∈ SnN,i

}
.

where SnN,i is given by

SnN,1 = {m ∈ [N + 1, n] : m odd } ,

SnN,2 = {m ∈ [N + 1, n] : m even } .

Then H1
Iw(K,T )i = lim←−H

1
N (Kn, T )(i).

Proof. Immediate from Corollary 4.7. �

Notation. Let F be a finite extension of Qp. For an integer n ≥ 1, we write F
(0)
n = ker(TrFn/Fn−1

).

Then we have

(11) Fn = F ⊕
n⊕
i=1

F
(0)
i .

Lemma 4.9. Let n ≥ N + 1 be an integer, then

H1
N (Kn, T )(i) =

(
exp∗Kn

)−1KN ⊕
⊕

m∈Sn
N,i′

K(0)
m · v1


where {i′} = {1, 2} \ {i}.

Proof. Let x ∈ Kn. By definition, the projection of x under (11) into K
(0)
m is zero if and only if TrKn/Km x ∈

Km−1. Hence the result. �

From now on, we make the following assumption.

Assumption 4.10. E(K∞) has no p-torsion.

Note that this is satisfied for example when [K : Qp] is a power of p.

Remark 4.11. Assumption 4.10 implies that the natural map H1(Kn, T ) - H1(Kn, V ) is injective for

all n ≥ 0. In particular, we may embed H1(Kn, T ) into H1(Kn, V ) and consider the former as a lattice

inside the latter.

Proposition 4.12. Let H1
f,N,(i)(Kn, T ) be the exact annihilator of H1

N (Kn, T )(i) under the Tate pairing.

Then

H1
f,N,(i)(Kn, T ) = H1(Kn, T ) ∩ expKn

 ⊕
m∈SnN,i

K(0)
m ⊗ Dcris(V )


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Proof. By Lemma 4.9, we have

(12) H1
f,N,(1)(Kn, T ) =

(exp∗Kn
)−1KN ⊕

⊕
m∈Sn

N,i′

K(0)
m · v1

⊥[,]

where (?)⊥[,] denotes the exact annihilator of ? under the pairing [∼,∼]. But

[expKn(∼),∼] = TrKn/Qp〈∼, exp∗Kn(∼)〉.

where 〈∼,∼〉 is the pairing

〈∼,∼〉 :
(
Kn ⊗ Dcris(V )

)
×
(
Kn ⊗ Dcris(V )

)
→ Kn.

Therefore,

(13) x ∈
((

exp∗Kn
)−1

(? · v1)
)⊥[,]

if and only if x ∈ expKn
(
(?)⊥ ⊗ Dcris(V )

)
where (?)⊥ denotes the orthogonal complement of ? under the pairing

Kn ×Kn → Qp

(x, y) 7→ TrKn/Qp(xy).

By linear algebra, we have KN ⊕
⊕

m∈Sn
N,i′

K(0)
m

⊥ =
⊕

m∈SnN,i

K(0)
m .

Hence the result on combining (12) with (13). �

Recall that the exponential map expKn gives an isomorphism

expKn : Kn ⊗ Dcris(V )/Fil0 Dcris(V ) - H1
f (Kn, V ).

We write exp−1Kn for its inverse.

By (11), we may define a projection map

PnN,i : Kn
- KN ⊕

⊕
m∈Sn

N,i′

K(0)
m .

We can then rewrite Proposition 4.12 as follows.

Corollary 4.13. For i = 1, 2, we have

H1
f,N,(i)(Kn, T ) =

{
x ∈ H1

f (Kn, T ) :
(
PnN,i ⊗ id

)
◦ exp−1Kn(x) = 0

}
.

Proof. Note that

Kn =

KN ⊕
⊕

m∈Sn
N,i′

K(0)
m

⊕
 ⊕
m∈SnN,i

K(0)
m

 .

Therefore,(
PnN,i ⊗ id

)
◦ exp−1Kn(x) = 0 if and only if exp−1Kn(x) ∈

⊕
m∈SnN,i

K(0)
m ⊗ Dcris(V )/Fil0 Dcris(V ).
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�

Recall that we have a commutative diagram

tan(Ê/Kn) �
⊃

logÊ(OKn) �
logÊ Ê(OKn)

⊂- Ê(OKn)⊗Qp

Kn ⊗ Dcris(V )/Fil0 Dcris(V )

∼= i

? expKn - H1(Kn, V )

δ

?

where δ is the Kummer map. If we identify the image of Ê(OKn) under δ with H1
f (Kn, T ), we have:

Corollary 4.14. For i ∈ {1, 2}, the image of H1
f,N,(i)(Kn, T ) inside Ê(OKn) coincides with

ÊiN (OKn) :=
{
x ∈ Ê(OKn) : TrKn/Km x ∈ Ê(OKm−1

) for all m ∈ SnN,i′ and TrKn/KN x = 0
}

=
{
x ∈ Ê(OKn) : PnN,i ◦ logÊ(x) = 0

}
.

Proof. By the comutative diagram above and Proposition 4.12, we have

δ(x) ∈ H1
f,N,(i)(Kn, T ) if and only if i ◦ logÊ(x) ∈

⊕
m∈SnN,i

K(0)
m ⊗ Dcris(V )/Fil0 Dcris(V ).

Since logÊ is injective (by Assumption 4.10) and compatible with the trace maps, we are done. �

4.3. Signed Selmer groups revisited. We now return to the global situation as set up at the beginning

of Section 4. Throughout this section, we continue to assume that Assumption 4.10 holds at all the primes

of L above p. We define the signed Selmer groups of E over L∞ using the “jumping conditions” we obtained

in the previous section.

Definition 4.15. Let L be a number field and N is an integer such that N ≥ N(Lw, V ) for all primes wof

L above p. For i = 1, 2, we define the Selmer groups

Sel
(i)
N (E/Ln) = ker

Sel(E/Ln) -
⊕
w|p

H1(Ln,w, Ep∞)

ÊiN (OLn,w)⊗Qp/Zp


for n ≥ N + 1. Moreover, we define

Sel
(i)
N (E/L∞) = lim−→

n≥N+1

Sel
(i)
N (E/Ln) = ker

Sel(E/L∞) -
⊕
ω|p

H1(L∞,ω, Ep∞)

ÊiN (OL∞,ω )⊗Qp/Zp


where ÊiN (OL∞,ω ) = lim−→ ÊiN (OLn,ω∩Ln ).

Lemma 4.16. Let K be a finite extension of Qp and n ≥ N(K,V ). For i = 1, 2, the exact annihilator of

H1
N (Kn, T )(i) under the Pontryagin duality

[∼,∼] : H1(Kn, T )×H1(Kn, Ep∞) - Qp/Zp

is isomorphic to H1
f,N,(i)(Kn, T )⊗Qp/Zp for i = 1, 2.
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Proof. This essentially follows from [Kob03, proofs of Lemma 8.17 and Proposition 8.18]. By definition, we

have an exact sequence

0 - H1
N (Kn, T )(i) - H1(Kn, T ) - Hom

(
H1
f,N,(i)(Kn, T ),Zp

)
.

On taking Pontryagin duals, we obtain a second exact sequence

H1
f,N,(i)(Kn, T )⊗Qp/Zp - H1(Kn, Ep∞) - H1

N (Kn, T )(i),∨ - 0.

Therefore, it remains to show that the first map above is injective. But [px, y] = p[x, y] for all x, y ∈
H1(Kn, T ). This implies that if x ∈ H1(Kn, T ) such that px ∈ H1

f,N,(i)(Kn, T ), then x ∈ H1
f,N,(i)(Kn, T ). �

Corollary 4.17. Let K be a finite extension of Qp and n ≥ N(K,V ). For i = 1, 2, the exact annihilator of

H1
N (Kn, T )(i) under the Pontryagin duality is isomorphic to ÊiN (OKn)⊗Qp/Zp for i = 1, 2.

Proof. This follows immediately from Corollary 4.14 and Lemma 4.16. �

Proposition 4.18. The two definitions of signed Selmer groups coincide, namely,

Sel
(i)
N (E/L∞) = Seli(E/L∞)

for i = 1, 2.

Proof. It suffices to show that for any finite extensions K of Qp, we have

lim−→
n

H1(Kn, Ep∞)

H1
f,i(Kn, Ep∞)

∼= lim−→
n≥N+1

H1(Kn, Ep∞)

ÊiN (OKn)⊗Qp/Zp

where N ≥ N(K,V ). On taking Pontryagin duals, this is equivalent to showing

lim←−H
1(Kn, T )i ∼= lim←−H

1
N (Kn, T )(i)

by Corollary 4.17. Therefore, we are done by Corollary 4.8. �

5. The supersingular MH(G)-conjecture

Throughout this section, we assume that E is an elliptic curve over Q with good supersingular reduction

at a prime p ≥ 3 and ap = 0. Let L∞ be a p-adic Lie extension of Q containing Q(µp∞), so G = Gal(L∞/

Q) is a compact p-adic Lie group of finite rank. Let H = Gal(L∞/Q(µp∞)). Choose a sequence of finite

extensions Lm of Q such that L∞ = lim−→Lm and L
(m)
∞ = Lm(µp∞) is Galois over Q for all m ≥ 0. Recall

that for i = 1, 2, we have defined Seli(E/L
(m)
∞ ) in Section 3.1. This allows to make the following definition.

Definition 5.1. For i = 1, 2, we define Seli(E/L∞) := lim−→m
Seli(E/L

(m)
∞ ) for = 1, 2 and write

Xi(E/L∞) = Homcts

(
Seli(E/L∞),Qp/Zp

)
.

Definition 5.2. Denote by MH(G) the category of finitely generated Λ(G)-modules M for which M/M(p)

is finitely generated over Λ(H). Here M(p) denotes the p-torsion part of M .

The MH(G)-conjecture in [CFK+05] states that the Pontryagin dual of the Selmer group of E over L∞ is

an element of MH(G) if E has good ordinary reduction at p. We therefore analogously propose the following

conjecture.
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Conjecture 5.3. Let E be an elliptic curve over Q with good supersingular reduction at p and ap = 0.

Let L∞ be a p-adic Lie extension of Q containing Q(µp∞). Define the Galois groups G = Gal(L∞/Q) and

H = Gal(L∞/Q(µp)). Then Xi(E/L∞) ∈MH(G) for i = 1, 2.

6. Difficulties

To simplify the notation, let Q∞ = Q(µp∞). In order to support Conjecture 5.3, we tried to prove the

following result:

Conjecture 6.1. Let E be an elliptic curve over Q with good supersingular reduction at p and ap = 0. Let

L∞ be a p-adic Lie extension of Q containing Q(µp∞), and let H = Gal(L∞/Q(µp∞)). Assume also that

E(Lv,∞) has no p-torsion for any prime v of L above p. Then for i = 1, 2, the kernel and cokernel of the

restriction map

Seli(E/Q∞) - Seli(E/L∞)H

are cofinitely generated Zp-modules.

Recall that Seli(E/Q∞) is Λ(Γ)-cotorsion ([Kob03, Theorem 1.2]). Assume H is pro-p, and that Conjec-

ture 6.1 holds. If Seli(E/Q∞) is a cofinitely generated Zp-module, which is equivalent to the vanishing of

the µ-invariant of Xi(E//Q∞) as conjectured in [Kob03, §10], then we can apply Nakayama’s lemma (c.f.

for example [CH01, Theorem 2.6]) to deduce that Xi(E/L∞) is finitely generated over Λ(H).

In this section, we will explain some of the difficulties that we encountered when trying to prove Conjec-

ture 6.1 when L∞ is a finite extension of Q∞. We first establish a preliminary result (Corollary 6.3), which

allows us to study a fundamental diagram (see the beginning of Section 6.2) analogous to the ordinary case.

6.1. Analysis of Poitou-Tate exact sequences. Write Sf for the set of finite places of S and let Iiv be

as defined in Section 3.1. By [PR95, §A.3], there are two exact sequences

0→ Seli(E/Q(µpn)) - H1(GS(Q(µpn)), Ep∞) -
⊕
v∈Sf

J iv(Q(µpn)) - H1
i (Q, T )∨ - · · ·(14)

0→ H1
i (Q(µpn), T )

fn- H1(GS(Q(µpn)), Ep∞)
gn-

⊕
v∈Sf

Iiv(Q(µpn)) - · · ·(15)

where H1
i (Q(µpn), T ) is defined by

ker
(
H1(Q(µpn), T ) -

∏
v∈Sf

Iiv(Q(µpn))
)

and M∨ denotes the Pontryagin dual of M .

Lemma 6.2. The natural map

H1
(
GS(Q∞), Ep∞

)
-

⊕
v∈Sf

J iv(Q∞)

is surjective.

Proof. On taking inverse limit, we have

lim←−
n

( ⊕
v∈Sf

Iiv(Q(µpn))
)

=
H1

Iw(Qp, T )

H1
Iw(Qp, T )i
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and lim←−
n

gn is injective by [Kob03, Theorem 7.3]. Therefore, on taking inverse limit in (15), we have

lim←−
n

H1
i (Q(µpn), T ) = 0,

which implies that lim−→
n

H1
i (Q(µpn), T )∨ = 0. Therefore, on taking direct limit in (14), we have an exact

sequence

0 - Seli(E/Q∞) - H1
(
GS(Q∞), Ep∞

)
-

⊕
v∈Sf

J iv(Q∞) - 0

and we are done. �

Corollary 6.3. The natural map

H1
(
GS(Q∞), Ep∞

)
-
⊕
v∈S

J iv(Q∞)

is surjective.

Proof. This follows as J iv(Q∞) = 0 for p 6= 2 if v is an infinite prime. �

6.2. The fundamental diagram. We attempted to prove Conjecture 6.1 by studying the following com-

mutative diagram, which we call the fundamental diagram.

0 - Seli(E/L∞)H - H1(GS(L∞), Ep∞)H -
⊕
v∈S

J iv(L∞)H

0 - Seli(E/Q∞)

α

6

- H1(GS(Q∞, Ep∞)

β

6

-
⊕
v∈S

J iv(Q∞)

γ = (γv)
6

- 0

where the J iv are as defined in Section 3.1. Applying the snake lemma gives a long exact sequence

0 - ker(α) - ker(β) - ker(γ) - coker(α) - coker(β).

In order to prove Conjecture 6.1, it is therefore sufficient to show that the kernel and cokernel of the map

β and the kernel of γ are cofinitely generated Zp-modules. The results for β and for γv, v - p, are easy

consequences of the inflation-restriction exact sequences (c.f. [CS00]).

The main difficulty is the study of the kernel of the local restriction map γv when v | p. Let K be

the completion of L at such a prime, and write H for the Galois group Gal(K∞/Qp,∞). In order to prove

Conjecture 6.1, we may use the local conditions from Section 4 and attempt to show that the kernel of the

map

H1(Qp,∞, Ep∞)

ÊiN (OQp,∞)⊗Qp/Zp
-

(
H1(K∞, Ep∞)

ÊiN (OK∞)⊗Qp/Zp

)H
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is a cofinitely generated Zp-module. Consider the following commutative diagram:

0 - ÊiN (OQp,∞)⊗Qp/Zp - H1(Qp,∞, Ep∞) - H1(Qp,∞, Ep∞)

ÊiN (OQp,∞)⊗Qp/Zp
- 0

0 -
(
ÊiN (OK∞)⊗Qp/Zp

)H?

-
(
H1(K∞, Ep∞)

)H?
-

(
H1(K∞, Ep∞)

ÊiN (OK∞)⊗Qp/Zp

)H?

where the vertical maps are restrictions. The the first two maps are injective by Assumption 4.10. By the

snake lemma, the kernel of the third map is bounded by the cokernel of the first, so it is sufficient to show

that the cokernel of the restriction map

ÊiN (OQp,∞)⊗Qp/Zp -
(
ÊiN (OK∞)⊗Qp/Zp

)H
is a cofinitely generated Zp-module. By taking H-cohomology of the short exact sequence

0 - ÊiN (OK∞) - ÊiN (OK∞)⊗Qp - ÊiN (OK∞)⊗Qp/Zp - 0,

we may reduce the validity of Conjecture 6.1 to the following conjecture.

Conjecture 6.4. The cohomological group H1
(
H, ÊiN (OK∞)

)
is a cofinitely generated Zp-module.

Note that it is shown in [CG96, Theorem 3.1] that H1
(
H, Ê(OK∞)

)
= 0. It therefore might be possible

to prove Conjecture 6.4 by showing that an exact sequence similar to [Kob03, (8.22)] holds, e.g., to give a

bound on the cokernel of the last map of

0 - Ê(OKN )
x 7→x⊕x- Ê1

N (OK∞)⊕ Ê2
N (OK∞)

x⊕y 7→x−y- Ê(OK∞).

Unfortunately, this does not seem to be straightforward as far as we can see.
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