Efficient Parametrisation of Rational
Normal Curves

Ant Lei
September 21, 2006

Abstract

This is the report for my research project' carried out during the
summer of 2006. The objective of the project is to find an efficient
parametrisation for rational normal curves over @Q. There is an algo-
rithm implemented in the latest version (v2.13) of the computer algebra
system Magma. We look into that as well as try to generalise techniques
for conics.

1 Introduction

First of all, we give the definition of a rational normal curve.

Definition 1 Let Cy C P9 be the image of the map vg : P* — P? given by
(s:t) — (s¢: st .. td). A rational normal curve of degree d is a curve
projectively equivalent to Cy. Cy is called the standard rational normal curve of
degree d.

Note that any basis of the space of homogeneous polynomials in s and ¢ of degree
d defines a rational normal curve. It is just a conic when d = 2, so we see that
rational normal curves generalise the idea of conics to higher dimensions. If we
denote the homogeneous coordinates of P4 by (zg : @1 : ... : 24), it is not hard
to see that C is defined by the following equation.

rank(o I1 P o |) -1 (1)

T1 T2 “e Tq
In fact, the ideal of Cy is generated by the following polynomials.
fig(x) = wixy — @iy, 1<i<j<d -1 2)

We want to parametrise a rational normal curve over (. From now on, un-
less otherwise stated, everything is defined over Q. If we have the projective
equivalence with Cy, we are done. However, such an equivalence is not unique

1T was supervised by Tom Fisher and the project was funded by Trinity College, Cambridge.

and there is no obvious way to find one when our curve is defined by a set of
quadrics. So our goal is, given a set of quadrics defining a rational normal curve,
we would like to find an algorithm that parametrises the curve if it exists. Note
that the existence of a parametrisation can be decided using Hasse principle.
By clearing the denominators, we may assume the projective equivalence is over
Z and all coefficients of the quadrics are in Z.

2 Use of Syzygies

There is an algorithm by Frank-Olaf Schreyer implemented on Magma v2.13.
The idea is to use a function called adjoint map that sends a rational normal
curve of degree d to one of degree d — 2. Recursively applying this function, the
curve is sent to a conic or P'. If the latter, we are done. For the former, there
is an polynomial-time algorithm in [2] that parametrises a conic?. Therefore, it
will give us a parametrisation for the rational normal curve.

To apply the adjoint map, one needs to work out the minimal free resolu-
tion of the quotient module of the ideal of the curve. Magma has a built-in
function that does the job. When dealing with ideals in Magma, the Groebner
basis will be computed. This is in general a good idea. For example, we can
find out if a polynomial is in the ideal easily using Groenber basis. However,
when computing the Groebner basis, the coefficients of the polynomials increase
rapidly. That makes the process of finding minimal free resolution slow. In fact,
we don’t actually need to find the Groebner basis in order to find the minimal
free resolution. It is shown in [1] that for a rational normal curve of degree d,
all the kernels are generated by linear forms and the length of the complex is d.
Therefore, the minimal free resolution can be found using linear algbera. Not
only are the coeflicients much smaller, but the time saved is also significant. See
section 5 for examples.

3 Minimisation Method

3.1 Algorithm for Conics

In [2], an algorithm that parametrises conics is introduced. The algorithm
consists of two parts, namely minimisation and indefinite LLL. The minimisation
method works as follows. Given a conic with integer coefficients, we work out
the factorisation of the discriminant which tells us what the ‘bad’ primes are,
ie those primes p which give singularities when the curve is reduced mod p.
For each of these primes, we can find a change of basis over Z such that the
new conic has coefficients divisible by p. On dividing by p, the modulus of the
discriminant decreases by 1/p. We can therefore assume the matrix representing
the quadratic form defined by the conic has determinant +1. We can then use
indefinite LLL to find a non-trivial solution, hence a parametrisation.

2The algorithm runs in polynomial time only when the factorisation of the discriminant is
known.

The most important step of the algorithm is applying the minimisation
method. Roughly speaking, it makes a singularity ‘worse’, so bad that we can
factor out p altogether. We have to choose our change of basis matrix carefully
so that after cancelling p, the singularity is actually ‘better’ than the one before.
We would like to see if we can do a similar trick for a general rational normal
curve.

3.2 ‘Bad’ Primes

Given a rational normal curve of degree 3, the adjoint map will send it to P!,
hence a parametrisation. So we consider the degree 4 case instead.

We would like to mimic the minimisation method. So we will have to find the
‘bad’ primes first. But this is not easy without an analogue of discriminant. The
difficulty is to find a well-defined quantity which is independent of the choice of
quadrics. Nonetheness, we can find the ‘bad’ primes by brute force as follows.

1. Take an affine piece, eg put o = 1, work out the jacobian of the six
equations, J say.

2. Let I be the ideal generated by the 3 x 3 minors of J over Z.
3. Work out the intersection of I and Z.

The idea is that at a singular point, J has rank less than 3, ie all 3 x 3 minors
vanish. So if I =< a > say, any prime factors of a are ‘bad’. However, we
will have to do this for all 5 affine pieces to ensure we have found all the ‘bad’
primes. To work out I NZ, we use a function called Eliminationldeal in Magma
which is slow when working over Z.

If we can eliminate ‘bad’ primes for higher degree curves, we would like to
make sure they will not reappear after applying the adjoint map. To do this,
we have to consider how the adjoint map works. We denote the polynomial ring
of P* by R and the ideal of the curve by I. The minimal free resolution looks
like this.

0—>R3E>R8£>R6—>R—>R/I—>O (3)

B is a 3 x 8 matrix over R, each entry is linear. We then construct a 5 x 8
matrix (denoted by A) over the polynomial ring P?, with variables ag, a; and
ag say, s.t. the (i,7)-entry of A is a linear form where the aj coefficient is
the x;_1 coeflicient of (k + 1, j)-entry of B. The annihilator of A is generated
by a quadric which will be the rational normal curve of degree 2 we want. In
particular, if we start with the standard rational normal curves defined by (2),
then the quadric would be a2 — agaz. We denote Ag for the 5 x 8 matrix in this
case.

Given a rational normal curve C' of degree 4, let M be a matrix over Z
sending C onto Cy. If we write y = Mx, then z € C iff y satisfies (2). So, C' is
defined by the following polynomials.

9i,j(x) = fij(Mx) = f; j(y),1 <i<j<3 (4)

Note that from [1], the minimal free resolution is unique up to isomorphisms.
So the minimal free resolution of C' is isomorphic to that of Cy after a change of
coordinates by M. Let X be the isomorphism from R® (under the x coordinates)
to R® (under the y coordinates). Similarly, ¥ denotes the map for R3. By
writing it out, one can see that A = M7T Ag(XT)~! with a change of coordinates
in P2 by YT. A and M7 Ay have the same image. M7 is invertible, so A and
Ap have the same annihilator. Therefore, the quadric we get is a2 — agag with
a change of coordinates by Y. If p is a prime not dividing det(A/), then the
two copies of R/I reduced mod p are isomorphic. Hence by the uniqueness of
minimal free resolution, Y is invertible mod p. Hence, p is not a ‘bad’ prime for
the final quadric. In other words, the ‘bad’ primes of the final quadric can only
be those of C.

If we apply the adjoint map using the Groebner basis, a lot of ‘bad’ primes
can be introduced because of the increase in coefficients. It’s another reason why
we should work out the minimal free resolution directly using linear algebra.

3.3 A Generalisation

Given a curve defined by (4), it is clear that the ‘bad’ primes can only be the
prime factors of det(A/). Indeed, by chain rule, we have Jy(x) = J¢(y)M.

If p is a prime dividing det(M), there exits x # 0 st. Mx =y = 0
(mod p). Such a point, say Xg, is a singular point of C' reduced mod p with zero
Jacobian. There exists a unimodular matrix over Z, M; say, s.t. Mieqg = Xo
where g = (1 : 0: 0 : 0 :0). Therefore, MMep = 0 (mod p), hence the
first column of MM, is divisible by p. Let My be the diagonal matrix with
entries 1,p,p,p,p. Then M My M, is divisible by p. If we apply the change of
coordinates defined by M; M, to C, we can factor out a factor of p? from the
new equations.

On continuing, we will eventually eliminate all the ‘bad’ primes. In fact, the
same trick would work for a rational normal curve of any degrees. However,
in reality, when given a rational normal curve, we don’t know how to find the
equations in the form of (4) as assumed above. If the six equations in (4) are
a=(q,---,¢gs), for any 6 x 6 invertible matrix N, the equations Nq defines C'.
Another problem is that after each step, we have to compute all the ‘bad’ primes
all over again to see if the ‘bad’ prime has been eliminated. If the coefficients
become large, the whole process would become very slow.

3.4 Pure Lattice

As we can see from above, a lot of ‘unnecessary’ singularity can be introduced
by N. For example, if N is a scalar matrix pI, then p can become a ‘bad’ prime
which is not introduced by M. To avoid this situation, we make use of the
concept of pure lattice.

Definition 2 Let A be an m X n matriz with integer entries. If B is its Smith
normal form, then B;,; where 1 < i < min(m,n) are called the elementary
divisors of A.

Definition 3 Given a lattice L with integer entries. The pure lattice of L, P
say, is such that P and L generate the same Q-vector space and the elementary
divisors of the basis matrix of P are trivial.

There is a built-in function called ‘PureLattice’ in Magma. Given six equations
defining C, it defines a lattice of degree 6 in R'®. By finding its pure lattice, we
can eliminate the trivial ‘bad’ primes introduced by N.

If we have equations Nq after applying PureLattice, the Jacobian becomes
NJg. If N has integer entries, then IV is unimodular. Plus, the singularity is
unchanged by N when reduced mod p for any primes p. The method mentioned
above will still work. However, if N has non-integer entries, ie we can cancel
some factors out from the quadrics, then the singularity is changed. Of course
zo can still be found as there are only finitely many points in P4(F,). But it is
not obvious if this point is still a singularity or even on the reduced curve.

3.5 Further Generalisations

We want to know how well the above method works in general. But we will
need a notion of ‘good’. Assume we have 6 quadrics. We perform a change
of coordinates using a 5 x 5 matrix M. After that, we performe a change of
basis for the 6 quadrics by a 6 x 6 matrix N. We want to compare det(M)
and det(N) to see the overall effect of the changes. If M is a scalar matrix pl,
setting N = p~2I would give us the original equations. So this suggests we
should consider the quantity det(M)2 det(N)®. When we apply the method in
3.3, this is (p*)12(p~12)® = p~!2. Now, we consider what would happen when
our equations are not of the form in (4).

When there is a singularity reduced mod p, the Jacobian has rank less than
3. As above, after a change of coordinates by a unimodular matrix, we may
assume the singular point is eq so that the coefficients of 22 are divisible by
p. Note that the Jacobian mod p at ey only depends on the coefficients of
ToT1,Toxa, Tors and xgxry. If the Jacobian has rank less than 3, we can make at
least two more terms (xox3 and xgx4 say) vanish mod p after a further change
of coordinates. If we perform another change of coordinates with the diagonal
matrix with entries 1,p,p,p,p as in 3.3, all cooeflicients not involving z(are
divisible by p2?. All terms involving x¢ have coeflicients divisible by p, at most
three of them (23, 79z; and woz2) are not divisible by p?. Amongst the 6 new
equations, we can cancel out at least a factor of p°. If we have a factor of p'® or
more, then the quantity we defined above would be at most (p*)12(p~1°)° = p—2.
We are actually doing ‘better’. In particular, we see that this works when the
Jacobian has rank 1 or 0. It’s also not clear how well it works for higher degrees.

4 Use of LLL Algorithm

We will see from the examples in section 5 that the coefficients increase when
we apply the adjoint map. Therefore, we want to make sure the increase is

under control so that our algorithm terminates in reasonable times. The LLL
algorithm returns ‘short’ basis vectors for a lattice. Although it doesn’t always
return the shortest basis vectors, it runs in polynomial time and the results are
usually satisfactory. One natural thing to do would be to apply it to the lattice
defined by the equations of the curve. This works fine, but it’s actually similar
in effect to the pure lattice method introduced in 3.4. We would like to see if
more can be done.

4.1 Indefinite LLL

A quadric defines a lattice when treated as a Gram matrix. In [2], a generalised
LLL algorithm is introduced and it is applied to the lattice defined by the Gram
matrix obtained from the conic. It will work even for a indefinite quadratic form,
but it will stop if an isotropic vector is found. To try to apply this to a general
rational normal curve, we will have to choose a non-degenerate quadratic form
in the ideal. We cannot find a canonical way to do so. When a random quadric
is chosen, the algorithm doesn’t guarantee that the coefficients in a generating
set for the ideal will be small. This is therefore not satisfactory.

4.2 Real Parametrisation

Given a rational normal curve of degree 4, C say, we can obtain a parametrisa-
tion over R as follows.

1. Choose a hyperplane in P4, H say, defined by some linear form.

2. Eliminate one variable in the six equations of C using the equation of H.
Use Eliminationldeal function to eliminate 2 more variables in 2.

We get a homogeneous polynomial in 2 variables from above.

Find a root in R or choose another hyperplane.

Have a real point on C, P say.

N ok w

Find a linear map sending P to eg. With this new basis, equations of C'
have no 3 terms.

8. Cancelling terms involving x(, we get three equations, defining a rational
normal curve of degree 3. The tangent at P is sent to a point on the new
curve.

9. Repeat until we get down to P!.
10. Substitue back and get a parametrisation.

Note that in order to carry out the cancellation needed, we have to work with
precise rings on a computer algebra system. Hence, we need to work with a
number field. We can only approximate the numbers by real numbers until the

end. This could make the calculation slow since the coefficients can become
large even though the real numbers itself are not.

If we have a parametrisation over R, we have a linear map in P4(R) sending
C onto Cy. If we can find a basis s.t. the this linear map has small coefficients,
one could hope that this will lead to smaller coefficients when parametrised over
Q as well. To do this, one could apply LLL algorithm to the lattice with basis
defined by this real linear map. However, there is no guarantee that it would
make the coefficients of the original equations smaller. In fact, it could increase
the coeflicients which makes the subsequent calculations actually slower.

5 Numerical Examples

All examples are generated with Magma v2.31. It is run on an Intel Pentium 4
1.9 GHz processor. All times shown below are in seconds.

5.1 Minimal Free Resolution

We take a random matrix, denoted by Ran below, to perform a change of basis
to generate a rational normal curve of degree 4. We take another random
matrix to change the six equations for the curve and then apply pure lattice.
We compare the built-in function MinimalFreeResolution with mykernel, a user-
defined function that computes the minimal free resolution of a rational normal
curve using linear algebra. We only give the times taken and the first entries of
the boundary maps in the last step to save space.

> Ran;

[-18 -76 -99 -4 82]
[-48 75 -2 -23 4]
[-14 -9 -66 62 99]
[92 22 -92 88 -90]
[-59 -74 -52 -8 42]

> time R:=MinimalFreeResolution(Q);

Time: 0.180

> BoundaryMap(R,3) [1,1];

165170098683939760040834/249275258804049862737795*$.3 -
61193716018582603485112/249275258804049862737795%$.4 -
231866301036425162647148/249275258804049862737795%$.5

> time for i in [1..d-2] do

time|for> M:=mykernel(d,M);

time|for> end for;

Time: 0.040

> M[1,1];

$.2 + 42640390759%$.4 + 74704111444%$.5

The time difference is even more significant when we consider a degree 5 curve.

-5 -3 10 -7 -6]
6 -7 5 -8 9]
9 4 2 2 0]
4 -6 10 1 2]
1 9 -7 -8 -1]

2 1 -6 10]

> time R:=MinimalFreeResolution(M);

Time: 21.920

> BoundaryMap(R,4) [1,1];

185803903218211477007/89175820660861618324%$.1 +
232171908783573386039/89175820660861618324*$.4 -
192438708595163675845/89175820660861618324%*$.6

> time for i in [1..d-2] do
time|for> M:=mykernel(d,M);
time|for> end for;

Time: 0.510

> M[1,1];

$.3 + $.4 + 1265731085%$.6

5.2 Adjoint Map

We have seen that when we apply the adjoint map directly, the ‘bad’ primes
of the final quadrics can only be those of the initial rational normal curve. In
fact, most of them don’t come up. However, if we use Groebner basis, some
‘bad’ primes can be introduced. Below are two examples. C4toQ is a user-
defined function modifying the built-in adjoint map with mykernel, C2 is the
conic obtained using the built-in function.

> Ran;

[-14 -36 65 44 -74]

[42 -70 30 -81 -30]

[14 -73 81 22 -16]

[71 -45 61 27 -18]

[42 -42 -47 -7 -95]

> Factorization(Determinant (Ran)) ;

[<3, 1>, <7, 1>, <11, 1>, <15152303, 1>]

> Q:=C4toQ(H);

> Q;

32490325025313%$.17°2 + 80294854266884*$.1%$.2 + 84895544519200%$.1%$.3 +
49609103761790%$.2°2 + 104903157628711%$.2%$.3 + 55456920433978%$.3"2

>
>

-1

>

C1:=Conic(P2,Q);
Discriminant (C1);

C2;

Conic over Rational Field defined by

$.

["2 e B e W e B e B e VA

>
>

172 + 315622122415595273314325/2945786067357799987436538*$.1x$.2 —
1008456133016370301712377519/35755951285588976247504698244%$.2°2 +
4926919765996045250092549/6873500823834866637351922*$.1%$.3 +
3042156797720302649036715631/5959325214264829374584116374%$.2x$.3 +
1506066617670458573282641733/3972883476176552916389410916%$.372

a:=Discriminant (C2);

Factorization(Numerator(a));

<3, 2>, <503, 4>, <1951, 4>, <6147251178389, 4>]

Factorization(Denominator(a));

<2, 2>, <7, 3>, <17, 2>, <31, 3>, <2647, 3>, <5983210994304365639, 3>]

Ran;
1245456 91728 9418968 -915959680 1218560320]
4698 -468 8892 76320 -159480]
1148958 0 10301850 -491552800 647671480]
1366632 0 12337650 -585880200 771954420]
-522 0 0 -18360 23700]

Factorization(Determinant (Ran)) ;
<2, 16>, <3, 10>, <5, 5>, <7, 2>, <13, 2>, <19, 1>]

Q:=C4toQ(H);
Q;

75602747865747363988971584659544%$.1°2 +

>

645874242585263863788161852353493*$.1%$.2 +

2271123649065397332100998986055823*$.1%$.3 +

1379425844335230037755529354870455*%$.272 +

9701104179853301952847416109851221*%$.2x$.3 +

17056267050317804929819820522799350*$.32
Discriminant(C);

-30

>
>

[

a:=Discriminant (C2);
Factorization(Numerator(a));
<3, 2>, <5, 4>, <13, 6>, <29, 4>, 17393, 4>, <577831, 4>,

<325397595196034843773335642009702817, 4>]

>

[

Factorization(Denominator(a));
<2, 4>, <7, 3>, <4643, 3>, <128903, 3>, <272257, 3>,

<2483152394230306023254465751554690982119400006722819, 3>]

5.3 Finding ‘Bad’ Primes

Below is an example where an affine piece can miss out a ‘bad’ prime when using
the method mentioned in 3.2. The second variable of the user-defined function,
BadPrimes, defines which affine piece to work with. Also note the long running
time despite the small coefficients.

> Ran;

[1125 0 0 -40 80]
[-60 5 38 16 -40]
[-60 0 8 16 -40]
[-280 0 0 10 -20]

[-291 25 190 80 -194]

> time Factorization(BadPrimes(H,1));

[
<2, 2>,
<5, 3>
]
Time: 5.220
> time Factorization(BadPrimes(H,2));
[
<2, 2>,
<3, 1>,
<5, 3>
]
Time: 4.440

5.4 Example for 3.3

Below is an example using the method introduced in 3.3. We apply PureLattice
after each step to make sure coefficients are under control. The determinant
of Ran tells us that we should do twice for p = 3. H is the set of equations
we start with. We will see that we can eliminate all the bad primes using this
method, but the coefficients are increased.

> Ran;

[3 37 91 -37 -23]

[90 -37 39 -88 15]

[-75 23 43 53 -42]

[47 -52 57 -58 -56]

[99 -12 -42 -76 80]

> Factorization(Integers() !Determinant (Ran));
[<3, 2>, <11, 1>, <b41, 1>, <727, 1>]

10

-998%$.172 + 3010%$.1%$.2 + 762%$.1%$.3 - 478%$.1%x$.4 -
4291x$.1%$.5 - 877x$.27°2 + 8126%$.2+%$.3 - 4168%$.2*x$.4 +
1470%$.2%$.5 — 3548%$.372 - 1424%$.3*$.4 + 3818*$.3*x$.5 +
1725x$.472 + 3218%$.4*$.5 + 180*$.572,

-1654*x$.1°2 - 1011*x$.1%$.2 - 7023*$.1*x$.3 + 6409%$.1%x$.4 +
3867*$.1x$.5 — 565%$.272 + 472*x$.2%$.3 + 279*%$.2x$.4 -
5059%$.2x$.5 + 2082x$.372 + 6231x$.3%$.4 - 2044%x$.3%$.5
4560%$.472 - 2761*x$.4*$.5 - 1536%$.572,

1190%$.17°2 - 5243*$.1*%$.2 + 3632*%$.1x$.3 - 2349*%$.1x$.4 -
3536%$.1%$.5 — 1685%$.272 + 1026%$.2x$.3 + 4437%$.2x$.4
8199%$.2x$.5 + 4500%$.372 — 6468%$.3%$.4 - 3401%$.3%$.5
1710%$.4°2 + 5121%$.4*x$.5 - 3578%$.572,

-1525%$.172 + 3496%$.1x$.2 + 1600%$.1x$.3 + 2676*$.1x$.4 +
1741%$.1%$.5 - 4202%$.2°2 - 1440%$.2*$.3 - 2403*$.2x$.4
6414*x$.2x$.5 + 5823%x$.372 - 4933%x$.3%$.4 - 6995%$.3*$.5
642*x$.472 + 1284*$.4x$.5 - 563*x$.572,

1745%$.1°2 - 1793*%$.1%$.2 - 4790*$.1x$.3 - 3594x$.1x$.4 -
3053*$.1x$.5 + 3176%$.272 + 5609*$.2%$.3 + 485%$.2*$.4 +
7725%$.2%$.5 - 2003%$.372 + 3128%$.3*$.4 - 2356*%$.3*x$.5 +
2307*$.4°2 + 3367*x$.4%$.5 + 4758%$.572,

-4239*%$.172 + 1263*$.1%x$.2 + 2758*$.1*%$.3 + 7352%$.1*x$.4 -
3232x$.1x$.5 + 2516%$.2°2 - 6669%$.2%$.3 + 126%$.2*x$.4 +
6364%$.2x$.5 - 2044%$.372 + 863*$.3%$.4 + 3640%$.3%$.5 -
3975%$.472 + 628%$.4%$.5 - 562*$.572

+

]
> Factorization(BadPrimes(H,1));
[

<3, 6>,

<11, 1>,

<541, 3>,

<727, 3>

]

//**xxWe start with p=11 and get HR*¥x*x

//***xThen we do the same for p=541 and get HR2*xx*x
//**x*Then p=727 and get HR3*xx*x

//**x*Then p=3 and get HR4***x*

//**x*and again gives HRG**x*x

> HRb5;

[

-2285783%$.172 + 4631296%$.1*x$.2 + 7743911%$.1%$.3 -
10898403*$.1*x$.4 - 10399373*$.1x$.5 + 243078%$.272 -
24656921%$.2x$.3 + 16351109%$.2*%$.4 + 20534946%$.2*$.5 +
20742140%$.372 + 2062761*$.3x$.4 - 13440973%$.3*$.5 -
16371680%$.472 - 9517846x$.4x$.5 + 17257882%$.572,

11

8318826*$.172 - 26121675%$.1%$.2 + 1341928*$.1%$.3 +
11925052%$.1%x$.4 - 15481775%$.1x$.5 + 21252513%$.272 -
6300433%$.2x$.3 - 25407532%$.2+$.4 + 31815090%$.2*$.5 +
5705641x$.372 + 25810474*$.3%$.4 - 25666059*$.3%$.5 -
19114857%$.472 - 820401%$.4%$.5 + 15302283%$.572,

-8160116%$.172 + 27746135%$.1%$.2 - 9812189*$.1%$.3 -
1547715%$.1x$.4 - 8160878*$.1+x$.5 — 24544155%$.27°2 +
22775212%$.2x$.3 - 2520262%$.2x$.4 + 4736997*$.2%$.5 -
12500405%$.372 + 14329620%$.3*$.4 + 28668685%$.3%$.5 -
3603412%$.472 - 42685817*$.4%$.5 + 14947243%$.572,

3569285*$.172 - 5582597*$.1%$.2 - 18434642%$.1%$.3 +
16037874*$.1x$.4 - 7073645%$.1*x$.5 + 3981785%$.27°2 +
3534822x$.2+$.3 - 15890475%$.2*$.4 + 22455215%$.2x$.5 +
40047367%$.372 - 26787724*$.3%$.4 - 37290493%$.3%x$.5
- 5484905%$.472 + 12114559%$.4*$.5 + 18970364%$.572,

-3445070%$.172 + 13089812%$.1%$.2 - 7101185%$.1%$.3 -
10893956%$.1x$.4 + 19528636%$.1%x$.5 - 12298221%$.272 +
13516702%$.2%$.3 + 9627685%$.2%$.4 - 29984517*$.2*x$.5 -
5215558%$.372 + 27154826%$.3%$.4 - 1272098%$.3*%$.5 -
31553865%$.472 + 23266507*$.4+$.5 - 10593933%$.572,

-7472758%$.172 + 21463969%$.1%$.2 + 4200023%$.1%$.3 +
361124*$.1*x$.4 + 1877855%$.1*x$.5 - 18306637*$.272 +
13064712%$.2x$.3 + 1049535%$.2%$.4 + 5012461%$.2*%$.5 -
32029264*$.372 - 8451360%$.3x$.4 - 27222783*$.3*$.5 +
37665728%$.472 + 25751268%$.4x$.5 - 1231265%$.572

]
> BadPrimes(HR5,1);
1
> BadPrimes(HR5,2);
1
> BadPrimes (HR5,3) ;
1
> BadPrimes (HR5,4) ;
1
> BadPrimes(HR5,5) ;
1

5.5 Pure Lattice

Below is an example that shows PureLattice can make 3.3 not work. F' is the
set of equations obtained after the change of coordinates and H is the set of
equations after applying PureLattice. In fact, the reduced (mod 13) curve is
singular with all singular points having rank 2 Jacobians. Geometrically, it is
just three lines.

> Ran;

12

o

0]
0]
0]
0]
1]

L I e I e B e BN e |

O O O O =
[

O O O Ww
=

O O W o o

O, O OO

> F;

-13%$.1x$.3 + 169%$.272,
-$.1x$.4 + 169%$.2x$.3,
-13*$.2x$.4 + 169*%$.372,
-$.1x$.5 + 13*%$.2%$.4,
-13%$.2x$.5 + 13%$.3%$.4,
-13%$.3%x$.5 + $.472

> H;

$.2%$.5 - $.3x$.4,
-$.1x$.3 + 13%$.272,
-$.2x$.4 + 13%$.372,
-13%$.3x$.5 + $.472,
$.1x$.5 - 13%$.2*x$.4,
$.1x$.4 - 169%$.2%x$.3

5.6 Indefinite LLL

As above, we randomly pick a rational normal curve. We take a non-degenerate
quadratic from (the sum of the basis) and apply the indefinite LLL algorithm
and get a change of basis matrix A. We see that it decreases the coeflicients of
the chosen form, but increases those of the original quadrics.

> H;
[

-2712x$.1°2 - 4860*$.1x$.2 - 3638*$.1%$.3 - 6290%$.1x$.4 +
3498%*$.1x$.5 — 3758%$.272 + 5988*$.2%$.3 + 545*%$.2%$.4 +
9014*$.2x$.5 + 7640%x$.372 + 4057x$.3%$.4 + 9149%$.3*$.5 -
1690%$.47°2 + 8592%$.4*$.5 + 3579%$.572,

4456%$.172 + 4672*%$.1%$.2 + 4730*%$.1%$.3 + 9890*$.1x$.4 -
7350%$.1%$.5 + 4002%$.27°2 - 641%$.2%$.3 + 4750%$.2*x$.4 +
3467x$.2%$.5 - 3333%$.372 + 2548%$.3%$.4 - 145%$.3%$.5 +
4765%$.472 - 9307*$.4*$.5 - 286*$.572,

-3124*%$.172 - 3181*%$.1%$.2 - 4222%$.1%$.3 - 4449%$.1*x$.4 -
3808%$.1x$.5 + 4823%x$.2°2 + 1863%$.2%$.3 - 7319%$.2x$.4 -
758x$.2%$.5 + 2851%$.3°2 + 4986%$.3x$.4 + 3868%$.3%$.5 +

13

6110%x$.4°2 + 6791*%$.4%x$.5 - 3153%x$.572,

6264%$.17°2 + 1038*$.1%$.2 - 717*$.1%$.3 + 6748*%x$.1x$.4 -
10689*$.1%$.5 — 5632%$.2°2 - 13594*$.2x$.3 + 3112x$.2x$.4 +
840%$.2x$.5 — 7437%$.372 + 408*$.3%$.4 + 3018%$.3*$.5 +
2780%$.4°2 - 2101*$.4x$.5 - 2235%x$.572,

-6102*$.172 - 11059%$.1+$.2 + 3736%$.1%$.3 + 1312%$.1*x$.4 +
3199%$.1%$.5 - 1329*%$.2°2 + 4930*%$.2x$.3 - 5171x$.2x$.4 -
1174%$.2%$.5 - 4072%x$.372 - 13881*$.3*$.4 - 3103%$.3*x$.5 -
1151%$.4°2 - 7189%$.4*x$.5 + 3328%$.572,

1200%$.172 - 724%$.1%$.2 - 8922x$.1%$.3 - 4572x$.1x$.4 -
13538*$.1*$.5 - 1915%$.272 + 4233*$.2x$.3 + 2592x$.2x$.4 +
3579%$.2%$.5 + 1034%$.372 - 9560%$.3*$.4 + 2163%$.3%$.5 -
6985%$.4°2 - 15414x$.4%$.5 - 167*$.572

]

> Q:=&+H;

> Q;

-18*%$.172 - 14114*$.1x$.2 - 9033*$.1x$.3 + 2639%$.1%$.4 -
28688%$.1%$.5 - 3809%$.27°2 + 2779%$.2%$.3 - 1491%$.2%$.4 +
14968%$.2x$.5 - 3317*$.372 - 11442%$.3%x$.4 + 14950%$.3%$.5 +
3829*%$.472 - 18628%*$.4x$.5 + 1066%$.572

> Q74;

-18%$.172 + 17*$.1x$.2 + 13*$.1*x$.3 - 5x$.1*x$.4 + $.1*x$.5 +
25848%$.2°2 - 7483*$.2+%$.3 - 5518%$.2+$.4 + 6475%$.2*%$.5 -
44062%$.372 + 41463%$.3%$.4 - 17434*$.3%$.5 - 38569*%$.472 +
18127*$.4%$.5 + 143395%$.572

> [H[i]"A:i in [1..6]1]1;

[

-2712x$.1°2 - 40922%$.1x$.2 - 169338%$.1x$.3 + 253068*$.1x$.4 +
614388+$.1%$.5 - 152700%$.2°2 - 1253258%$.2%$.3 +
1893211%$.2*$.4 + 4616839%$.2+%$.5 - 2625446%$.372 +
7805471%$.3%$.4 + 19097796*$.3*$.5 — 5839668*$.472 -
28533270*$.4*x$.5 - 34730382x$.572,

4456%$.1°2 + 64282%$.1%$.2 + 281118*$.1*$.3 - 413668*$.1x$.4 -
1009852*$.1%$.5 + 234784x$.272 + 2014045%$.2x$.3 -
2084473x$.2%$.4 - 7278203*$.2%$.5 + 4422299%$.372 -
12988153*$.3%$.4 - 31800456%$.3%$.5 + 9544728%$.472 +
46754858%$.4x$.5 + 57154375%$.572,

-3124*%$.172 - 39097*x$.1%$.2 — 199992%$.1*x$.3 + 283770*$.1x$.4 +
705226*$.1%$.5 - 111744%$.272 - 1211418%$.2x$.3 +
1755115%$.2+$.4 + 4395818*$.2*$.5 - 3163815%$.372 +
9047226%x$.3%$.4 + 22543547*$.3*%$.5 - 6426914%x$.472 -
32001512x$.4x$.5 - 39788614*$.572,

6264*x$.1°2 + 77891*x$.1x$.2 + 384141%$.1*$.3 - 559770*x$.1x$.4 -
1403171%$.1*%$.5 + 249908+$.2°2 + 2382666%$.2*%$.3 -
3482562x$.2x$.4 - 8716353%$.2+x$.5 + 5880770%$.37°2 -

14

17107206%$.3%$.4 - 42971021%$.3%$.5 + 12424554%$.472 +
62529993%$.4%$.5 + 78497980%$.572,

-6102%$.172 - 73191%$.1x$.2 - 344998*$.1%$.3 + 528967*$.1x$.4 +
1345356%$.1x$.5 - 210920%$.272 - 2110495%$.2%$.3 +
3211974%$.2x$.4 + 8122411%$.2%$.5 - 4902460%$.372 +
15027548+$.3x$.4 + 38092536%$.3*%$.5 - 11485087*$.472 -
58349517*$.4%x$.5 - 74166006%$.572,

1200%$.172 + 11054*$.1x$.2 + 49082%$.1x$.3 - 92372%$.1x$.4 -
251946%$.1%$.5 + 16520%$.272 + 170977x$.2%$.3 - 398783*$.2x$.4 -
1134037%$.2*x$.5 + 344590%$.372 - 1743423%$.3%$.4 -
4979836%$.3%$.5 + 1743818%$.472 + 9617575%$.4*$.5 +
13176042%$.572

5.7 Real Parametrisation

We obtain a real parametrisation by intersecting with the hyperplane z, = 0.
M represents the map from the standard rational normal curve onto the random
curve we generated. We try to apply LLL to both M and M~!. Both changes
of coordinates increase the coefficients of the original quadrics. We only show
the first polynomials of the generating sets because of space.

> Ran;

[-99 -91 27 6 -96]

[81 80 77 79 -71]

[30 -90 -23 -22 -38]

[88 8 82 46 -82]

[-100 55 84 88 97]

> H[1];

11142%$.172 + 3910%$.1%$.2 + 6189%$.1x$.3 + 4614x*$.1%$.4 -
4878x$.1%$.5 — 6472%x$.2°2 - 1524x$.2x$.3 - 4732%$.2x$.4 -
3344x$.2%$.5 - 3985%$.372 - 5245%$.3*$.4 + 8793%$.3*x$.5 -
2014*x$.472 + 3468*$.4%x$.5 - 5174x$.572,

> M;

[0.0109766266708460108704138517419 -0.0258403540217259910329498122330
0.0194666026454675288796094184111 -0.00600832691168593347970583911183
0.000661801815549585622955667573798]

[0.0228717288733096038649697963765 -0.0226748256636792184361963533719
0.00746317556845701524694123524006 -0.000812381225736292330234482571252
3.41773590233165740244193346846E-6]

[0.0647710348422211081374734857662 -0.0987168625409206034215275349582
0.0526707846345776222421358000689 -0.0116788793738934666015795057589
0.000904259196951546730798041661287]

[-0.109505375884754266776567078987 0.151214134498079577649471396674
-0.0756889973847031434676800921400 0.0160677310662834969481060319135

15

-0.00120579082027436196481619726528]

[0.0331987029994949445374674730687 -0.0591773421494050730625452937925
0.0371189217351007788301703524343 -0.00997520390903073121536742972961
0.000980790142194652336055128158293]

> _,A:=LLL(M);

> _,B:=LLL(M"-1);

> H[1]“ChangeRing(A,Rationals());

-126755530%$.172 - 155841195%$.1%$.2 - 157036729%$.1x$.3 -
87806065%$.1x$.4 + 208015013*$.1x$.5 - 47080973*$.2°2 -
95667416%$.2x$.3 - 52988845+$.2%$.4 + 128326976%$.2*%$.5 -
48410595%$.372 - 53870435%$.3*$.4 + 129096232x$.3*$.5 -
14908948%$.472 + 72322547%$.4%$.5 - 85279389%$.572,

> H[1] “ChangeRing(B,Rationals());

-67085517*$.1°2 + 178368130*$.1%$.2 - 83081797*$.1%$.3 +
15447511%$.1%$.4 - 888454x$.1%$.5 - 119896541%$.272 +
113625627%$.2x$.3 - 21786523*$.2x$.4 + 1343072%$.2x$.5 -
27548926*$.372 + 10964565%$.3*$.4 — 727579%$.3*%$.5 —
1151224%$.4°2 + 167515%$.4x$.5 - 6939%$.5°2,

References

[1] D. Eisenbud: Geometry of Syzygies : A Second Course in Commutative
Algebra and Algebraic Geometry, Springer (2005).

[2] D. Simon: Solving Quadratic Equations Using Reduced Unimodular
Quadratic Forms, Mathematics of Computation, vol. 74, No. 251 (2005),
1531-1543.

16

