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Iwasawa Theory for Modular Forms at Supersingular Primes
Antonio Lei

Summary

Let f =
∑
anq

n be a normalised eigen-newform of weight k ≥ 2 and p an

odd prime which does not divide the level of f . We study a reformulation of

Kato’s main conjecture for f over the Zp-cyclotomic extension of Q. In par-

ticular, we generalise Kobayashi’s main conjecture on p-supersingular elliptic

curves over Q with ap = 0, which asserts that Pollack’s p-adic L-functions gen-

erate the characteristic ideals of some ±-Selmer groups which are cotorsion over

the Iwasawa algebra Λ = Zp[[Zp]].

We begin by studying the p-adic Hodge theory for the p-adic representation

associated to f in the case when ap = 0. It allows us to give analogous defi-

nitions of Kobayashi’s ±-Coleman maps and ±-Selmer groups. The Coleman

maps are used to show that the Pontryagin duals of these new Selmer groups

are torsion over Λ as in the elliptic curve case. As a consequence, we formulate

a main conjecture stating that Pollack’s p-adic L-functions generate their char-

acteristic ideals. Similar to Kobayashi’s works, we prove one inclusion of the

main conjecture using an Euler system constructed by Kato.

We then prove the other inclusion of the main conjecture for CM modular

forms, generalising works of Pollack and Rubin on CM elliptic curves. As a key

step of the proof, we generalise the reciprocity law of Coates-Wiles and Rubin.

Next, we study Wach modules associated to positive crystalline p-adic rep-

resentations in general and generalise the construction of the Coleman maps.

By applying this to modular forms with much more general ap, we define two

Coleman maps and decompose the classical p-adic L functions of f into linear

combinations of two power series of bounded coefficients generalising works of

Pollack (in the case ap = 0) and Sprung (when f corresponds to an elliptic curve

over Q with ap 6= 0). Once again, this leads to a reformulation of Kato’s main

conjecture involving cotorsion Selmer groups and p-adic L-functions of bounded

coefficients. One inclusion of this new main conjecture is proved in the same

way as the ap = 0 case.

Finally, we explain how the ±-Coleman maps can be extended to Lubin-Tate

extensions of height 1 in place of the Zp-cyclotomic extension. This generalises

works of Iovita and Pollack for elliptic curves over Q.
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Chapter 1

Introduction

1.1 Background

Let p be an odd prime and let G∞ be the Galois group of the extension Q∞ of

Q by p power roots of unity. We denote by Λ(G∞) the Iwasawa algebra of G∞

over Zp. If ∆ denotes the torsion subgroup of G∞ and γ is a fixed topological

generator of the Zp-part of G∞, then Λ(G∞) ∼= Zp[∆][[γ − 1]].

Let E be an elliptic curve defined over Q which has good ordinary reduction

at p. The p-adic L-function Lp,E ∈ Q⊗Λ(G∞) of Mazur and Swinnerton-Dyer

interpolates complex L-values of E. It is conjectured that Lp,E is in fact an

element of Λ(G∞).

The p-Selmer group of E over any number field F is defined to be

Selp(E/F ) = ker

(
H1(F,E[p∞])→

∏
v

H1(Fv, E[p∞])
E(Fv)⊗Qp/Zp

)
,

where the product is taken over all places of F . If we let Selp(E/Q∞) =

lim−→ Selp(E/F ) where F runs through the finite extensions of Q in Q∞, then

Selp(E/Q∞) is equipped with an action of Λ(G∞). It turns out that the Pon-

tryagin dual

Selp(E/Q∞)∨ = Homcts(Selp(E/Q∞),Qp/Zp)

is finitely generated over Λ(G∞), and a theorem of Kato-Rohrlich (conjectured

by Mazur) states that it is in fact Λ(G∞)-torsion. If η is a character on ∆, we can

associate to the η-isotypical component of Selp(E/Q∞)∨ a characteristic ideal,

and the main conjecture of cyclotomic Iwasawa theory for E at p asserts that

1
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this ideal is generated by the η-component of Lp,E (written as Lηp,E), i.e. there

is a pseudo-isomorphism (a homomorphism with finite kernel and cokernel)

Selp(E/Q∞)∨,η →
r∏
i=1

Zp[[γ − 1]]/(fi)

for some fi ∈ Zp[[γ − 1]] such that f1 · · · fr = Lηp,E .

The construction of p-adic L-functions has been generalised to more general

primes and modular forms in [AV75, MTT86]. Let f =
∑
anq

n be a normalised

eigen-newform of weight k ≥ 2, level N and character ε. Fix an odd prime p

such that p - N . If α is a root of X2 − apX + ε(p)pk−1 such that vp(α) < k − 1

where vp is the p-adic valuation of Cp with vp(p) = 1, then there exists a p-adic

L-function Lp,α interpolating complex L-values of f . Perrin-Riou [PR95] has

established a theory of p-adic L-functions for p-adic representations coming from

motives and formulated a main conjecture for such representations. When the

motive corresponds to a modular form, Perrin-Riou’s main conjecture has been

reformulated by Kato [Kat04] using the theory of Euler systems. If f is ordinary

at p (i.e. ap is a p-adic unit) and α is the unique unit root of the quadratic

above, then Lp,α ∈ Q⊗Λ(G∞), and the main conjecture again asserts that Lp,α

generates the characteristic ideal of Selp(f/Q∞)∨. In op.cit., Kato has shown

that Lp,α is contained in the characteristic ideal of Selp(f/Q∞)∨ under some

technical assumptions; his proof relies on the interpolating property of an Euler

system associated to f (which we refer to as the Kato zeta elements).

When f is supersingular at p (i.e. p|ap), two problems arise: on the one hand,

the p-adic L-functions obtained in [AV75, MTT86] are no longer elements of Q⊗

Λ(G∞) (they have unbounded coefficients), and on the other hand, Selp(f/Q∞)∨

is no longer Λ(G∞)-torsion. Perrin-Riou’s (and hence Kato’s) main conjecture

can therefore not be translated into a statement relating Lp,α and Selp(f/Q∞)

as in the ordinary case. When ap = 0, a remedy was made possible by the works

of Pollack [Pol03]: If α1 and α2 are the roots of X2 + ε(p)pk−1, Pollack showed

that there is a decomposition

Lp,αi = log+
p,k L

+
p,f + αi log−p,k L

−
p,f

for i = 1, 2, where L±p,f ∈ Λ(G∞) ⊗ Q and log±p,k are some fixed power series

which only depend on k. When f corresponds to an elliptic curve E over Q,
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Kobayashi formulates a main conjecture giving an arithmetic interpretation of

these new p-adic L-functions in [Kob03]. In analogy to the ordinary reduction

case, he defines the plus and minus Selmer groups Sel±p (E/Q∞) by modifying

the local conditions at p in the definition of the usual Selmer group. Let TpE be

the Tate module of E. Kobayashi shows that Sel±p (E/Q∞)∨ is Λ(G∞)-torsion

by defining the so-called plus and minus Coleman maps

Col± : H1
Iw(Qp, TpE)→ Λ(G∞),

which construction depends on the structure of the formal group attached to

E. Kobayashi’s modified main conjecture then asserts that L±,ηp,f generate the

respective characteristic ideals of Sel±p (E/Q∞)∨,η with η as above and it is

equivalent to Kato’s and Perrin-Riou’s main conjectures. On proving that Col±

send the localisation of the Kato zeta elements to L±p,f , Kobayashi proved one

inclusion of the main conjecture as in the ordinary case. When the elliptic curve

has complex multiplication, the full conjecture has been proved by Pollack and

Rubin [PR04].

Sprung [Spr09] has extended the results of Pollack and Kobayashi to p-

supersingular elliptic curves with ap 6= 0 (which forces p to be 2 or 3). He

constructed a matrix M whose entries are functions of logarithmic growth de-

pending only on ap such that(
Lp,α
Lp,β

)
= M

(
Lϑp
Lυp

)
with Lϑp , L

υ
p ∈ Λ(G∞)⊗Q. He also constructed the associated Coleman maps

Colϑ,Colυ : H1
Iw(Qp, TpE)→ Λ(G∞),

which send Kato’s zeta elements to Lϑp and Lυp respectively. Using these Coleman

maps, Sprung defined two Selmer groups Selϑp (E/Q∞) and Selυp(E/Q∞) and

formulated the corresponding main conjectures.

1.2 Main results

The Taniyama-Shimura conjecture, proved by Wiles et al, asserts that elliptic

curves over Q correspond to modular forms of weight 2. Therefore, it is natural

to ask which results on elliptic curves can be generalised to modular forms of
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higher weights. In this thesis, we discuss how this can be done for the results of

p-supersingular elliptic curves we stated above.

Since the p-adic L-functions of Pollack are defined for any modular forms

(by which we mean normalised eigen-newform) f of any weights k ≥ 2 with

ap = 0, one expects that it should be possible to generalise works of Kobayashi

to higher weight forms formulating a main conjecture involving L±p,f . By Kuri-

hara [Kur02], we can interpret Kobayashi’s Coleman maps for an elliptic curve

E/Q as pairings with some special points of the formal group associated to E

under the exponential map. For an arbitrary f , Deligne [Del69] showed that

there exists a p-adic representation Vf of GQ = Gal(Q/Q) associated to f ,

which generalises the definition of Tate modules for elliptic curves, whereas the

exponential map of Bloch and Kato from [BK90], which is a map on Dcris(Vf ),

generalises the exponential map for a formal group. These observations suggest

the possibility of defining Col± for general f by p-adic Hodge theory in place of

formal groups.

Indeed, in this thesis, we show that the ±-Coleman maps

Col± : H1
Iw(Qp, Vf )→ Λ(G∞)⊗Q,

can be constructed by studying Dcris(Vf ) and the Perrin-Riou exponential [PR94]

associated to Vf , which interpolates values of Bloch-Kato’s exponential. This

is the content of Chapter 2. We first review some properties of Perrin-Riou’s

exponential and relate them to the Kato zeta elements. We then establish a

divisibility property, namely that the images of the Perrin-Riou map of certain

elements are divisible by Pollack’s ±-logarithms. This allows us to define Col±

to be the quotient of the Perrin-Riou map by log±p,k. Using the same machinery,

we show that the Coleman maps of Sprung can be defined using the Perrin-Riou

map also. As a consequence, we show that Sprung’s works can be generalised

to general weight 2 modular forms.

In Chapter 3, we study the kernels of the Coleman maps. In particular, we

assume p ≥ k−1 so that Vf is Fontaine-Laffaille. In this case, there is a structure

theorem for Vf , which allows us to establish a few elementary properties of

the cohomology H1 of Vf and generalise the description of the kernels given in

[Kob03]. Under the same assumption, we study the images of the Coleman maps

in Chapter 4. We prove a necessary and sufficient condition for the divisibility
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by log±p,k, which allows us to give a fairly explicit description of the images.

In Chapter 5, we generalise Kobayashi’s definition of Sel±p . By studying

Poitou-Tate exact sequences, we relate Sel±p to the kernel of Col± as described

in Chapter 3. We then show that Sel±p (f/Q∞) is indeed Λ(G∞)-cotorsion and

the Zp[[γ− 1]]-characteristic ideals at an isotypical component of ∆ contain the

respective Pollack’s p-adic L-functions by applying our Coleman maps to the

Kato zeta elements. In particular, we show that L±p,f 6= 0 by a simple application

of the non-vanishing results for the complex L-values of f by Rohrlich [Roh88]

and Shimura [Shi76]. This gives a reformulation of the main conjectures of

Kato and Perrin-Riou stating that L±,ηp,f generates the characteristic ideal of

Sel±p (f/Q∞)∨,η where η is a character on ∆.

In Chapter 6, we generalise works of Pollack and Rubin [PR04] for elliptic

curves to show that the main conjecture holds for CM modular forms (under

some technical conditions). The main ingredient of the proof is a generalisation

the reciprocity law of Coates-Wiles and Rubin, which we prove by studying

properties of elliptic units associated to a CM form.

We remove the assumption ap = 0 in Chapter 7. We study the (ϕ,G∞)-

module associated to Vf . By Fontaine, for any Zp-linear representation T of

GQp there is a canonical isomorphism H1
Iw(Qp, T ) ∼= D(T )ψ=1, where D(T )

denotes the (ϕ,G∞)-module of T , a module over the p-adic completion AQp of

the power series ring Zp[[π]][π−1] and ψ is a certain left inverse of ϕ. It therefore

suffices to define our Coleman maps on D(T )ψ=1 instead of H1
Iw(Qp, T ).

We do this via Berger’s theory of Wach modules [Ber03], which is a refined

version of (ϕ,G∞)-modules for crystalline representations, originally studied by

Wach in [Wac96]. Wach modules have the advantage that they are finitely

generated modules over the simpler ring Zp[[π]], and if V is a d-dimensional

positive crystalline representation of GQp satisfying a mild technical condition,

then D(V )ψ=1 = N(V )ψ=1. For any such representation and a basis of N(V ),

we construct in Section 7.1 a family of Coleman maps

Coli : N(V )ψ=1 → Λ(G∞)⊗Q (1 ≤ i ≤ d)

by showing that (1−ϕ)
(
N(V )ψ=1

)
is contained in a free Λ(G∞)⊗Q-module of
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rank d, say with basis n1, . . . , nd. We then define Coli by the relation

(1− ϕ)x =
d∑
i=1

Coli(x)ni

for x ∈ N(V )ψ=1.

Let f be a normalised new eigenform of level N with p - N as above (either

ordinary or supersingular). We pick a ‘good basis’ of Dcris(Vf ) and lift it to a

basis of N(Vf ). This gives two Coleman maps

Coli : H1
Iw(Qp, Vf )→ Λ(G∞)⊗Q,

i = 1, 2. We define the Selmer groups Selip(f/Q∞) by modifying the local

condition of the usual Selp at p using ker(Coli) and define the p-adic L-functions

Lp,i ∈ Λ(G∞)⊗Q as the image of the Kato zeta element under Coli.

When f is supersingular at p, we show that there is a decomposition(
Lp,α
Lp,β

)
= M

(
L̃p,1
L̃p,2

)
(1.1)

for some 2 × 2-matrix M with entries of logarithmic growths. When p is large

compared to k, there is a canonical choice of M depending on k and ap only.

This generalises the decompositions of Lp,α, Lp,β given by Pollack when ap = 0

and by Sprung when f corresponds to an elliptic curve defined over Q. In order

to show that the two approaches are compatible, we prove that the Perrin-Riou

map used in Chapter 2 is related to (1− ϕ) by a simple formula.

When f is ordinary at p, our Coleman maps also give rise to two p-adic

L-functions in Λ(G∞) ⊗ Q. Let α and β be the unit and non-unit eigenvalues

of the Frobenius respectively. The Kato zeta element gives rise to two p-adic

L-functions Lp,α and Lp,β . The analogue of (1.1) becomes(
Lp,α
Lp,β

)
=
(

1 0
∗ ∗

)(
L̃p,1
L̃p,2

)
, (1.2)

which is a generalisation of a result of Perrin-Riou [PR93] for p-ordinary elliptic

curves. Note that the first Coleman map gives the usual p-adic L-function of

f and the corresponding Selmer group is simply Selp(f/Q∞) as constructed in

[Kat04], whereas the second Coleman map gives a new p-adic L-function L̃p,2

and a new Selmer group. which we show is Λ(G∞)-cotorsion and its Pontryagin

dual is annihilated by L̃p,2 at each ∆-isotypical component.
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The decompositions (1.1) and (1.2) allow us to show that L̃p,1, L̃p,2 6= 0

and the respective Selmer groups are Λ(G∞)-cotorsion. We then reformulate

Kato’s and Perrin-Riou’s main conjectures relating these p-adic L-functions to

the characteristic ideals of Selip(f/Q∞)∨. As above, we prove that one inclusion

holds.

There are two appendices in this thesis. We prove some elementary linear

algebra results on Lubin-Tate extensions in Appendix A. They are used to

give the description of ker(Col±) given in Chapter 3 and that of Im(Col±) in

Chapter 4. In Appendix B, in place of the cyclotomic extension of Qp, we extend

the construction of the ±-Coleman maps to Lubin-Tate extensions of height 1 by

studying a generalisation of Perrin-Riou’s exponential given by Zhang [Zha04b].

Roughly speaking, Chapters 2 to 6 are based on [Lei09b], Chapter 7 is based

on [LLZ10] and the two appendices are mainly taken from [Lei09a].

1.3 Notation and basic properties

1.3.1 Extensions by p power roots of unity

Throughout this thesis, p is an odd prime. If K is a field of characteristic 0,

either local or global, GK denotes its absolute Galois group, χ the p-cyclotomic

character on GK and OK the ring of integers of K. For an integer n ≥ 0, we

write Kn for the extension K(µpn) where µpn is the set of pnth roots of unity

and K∞ denotes ∪n≥1Kn. The Zp-cyclotomic extension of K is denoted by Kc

and K(n) denotes the pn-subextension inside Kc.

For n ≥ m, we write Trn/m for the trace map from Qp,n to Qp,m. Let Gn

denote the Galois group Gal(Qp,n/Qp) for 0 ≤ n ≤ ∞. Then, G∞ ∼= ∆ × Γ

where ∆ = G1 is a finite group of order p − 1 and Γ = Gal(Qp,∞/Qp,1) ∼= Zp.

We fix a topological generator γ of Γ and write u = χ(γ). In particular, u is a

topological generator of 1 + pZp.

Given a finite extension K of Qp, ΛOK (respectively ΓOK ) denotes the Iwa-

sawa algebra of G∞ (respectively Γ) over OK . We further write ΛK = ΛOK ⊗Q

and ΓK = ΓOK ⊗Q. When K = Qp (so OK = Zp), we simply write Λ for ΛZp .

If M is a finitely generated ΓOK -torsion (respectively ΓK-torsion) module, we

write CharΓOK
(M) (respectively CharΓK (M)) for its characteristic ideal.

Given a module M over ΛOK (respectively ΛK) and a character δ : ∆→ Z×p ,
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Mδ denotes the δ-isotypical component of M . For any m ∈M , we write mδ for

the projection of m into Mδ. The Pontryagin dual of M is written as M∨.

1.3.2 Fontaine rings

Let Ẽ =
{

(x(0), x(1), . . . ) ∈ CN
p : (x(i+1))p = x(i)

}
and write Ã for its Witt

vectors and B̃ = Ã[p−1]. For each n, we fix a primitive pnth root of unity ζpn

such that ζppn+1 = ζpn . We write ε for the lift of (ζpn)n ∈ Ẽ in A and π = ε+ 1.

We have g · π = (1 + π)χ(g) − 1 for all g ∈ GQp and t = log(ε) ∈ BdR. We also

have the following rings:

A+
Qp = Zp[[π]] ⊂ AQp = ̂Zp[[π]][π−1] ⊂ Ã,

B+
Qp = A+

Qp [p−1] ⊂ BQp = AQp [p−1] ⊂ B̃

whereˆdenotes the p-adic completion.

Let B+
rig,Qp be the set of f(π) ∈ Qp[[π]] such that f(X) converges everywhere

on the open unit p-adic disc. In particular, t ∈ B+
rig,Qp . We have a derivation

∂ : B+
rig,Qp → B+

rig,Qp with ∂ = (1 + π) d
dπ .

The Frobenius is written as ϕ, so ϕ(π) = (1 + π)p − 1 and ψ denotes its left

inverse that satisfies

ϕ ◦ ψ(f(π)) =
1
p

∑
ζp=1

f(ζ(π + 1)− 1).

We write q for ϕ(π)/π.

1.3.3 Crystalline representations

Let V be a p-adic representation of GQp which is crystalline. We denote the

Dieudonné module by D(V ) = Dcris(V ). If j ∈ Z, Dj(V ) denotes the jth

de Rham filtration of D(V ). If z ∈ Qp,n((t)) ⊗Qp D(V ), denote the constant

coefficient of z by ∂V (z) ∈ Qp,n ⊗Qp D(V ).

We write D∞(V ) = B+,ψ=0
Qp ⊗

Qp
D(V ), which is contained in B+

rig,Qp ⊗ D(V ).

The map ϕ⊗ ϕ on B+
rig,Qp ⊗ D(V ) is simply written as ϕ and the map ∂ ⊗ 1 is

written as ∂. Note that ∂ acts on D∞(V ) bijectively, so ∂j makes sense for any

j ∈ Z.

Let T be a lattice of V which is stable under GQp . For integers m ≥ n, we

write corm/n for the corestriction map

H1(Qp,m, A)→ H1(Qp,n, A)
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where A = V or T . Let H1
Iw(T ) denote the inverse limit lim

←
H1(Qp,n, T ) with

respect to the corestriction and H1
Iw(V ) = Q ⊗ H1

Iw(T ). Moreover, if V arises

from the restriction of a p-adic representation of GQ and T is a lattice stable

under GQ, we write

H1(T ) = lim
←−
n

H1(Z[ζpn , 1/p], T ),

H1(V ) = Q⊗H1(T ).

The (ϕ,G∞)-module of V is denoted by D(V ). The canonical Λ-module

isomorphism defined by Fontaine is written as

h1
Iw : D(V )ψ=1 → H1

Iw(V ) (1.3)

and we write h1
Qp,n,V for its composition with the projection from H1

Iw(V ) to

H1(Qp,n, V ).

Let V (j) denote the jth Tate twist of V , i.e. V (j) = V ⊗ Qpej where GQp

acts on ej via χj . We have

D(V (j)) = t−jD(V )⊗ ej .

For any v ∈ D(V ), vj = v ⊗ t−jej denotes its image in D(V (j)). We write

Twj,V : H1
Iw(V )→ H1

Iw(V (j))

for the isomorphism defined in [PR93, Section A.4], which depends on our choice

of ζpn . For each n and j, we write

expn,j : Qp,n ⊗ D(V (j))→ H1(Qp,n, V (j))

for Bloch-Kato’s exponential defined in [BK90].

1.3.4 Power series

Let r ∈ R≥0. We define

Hr =

 ∑
n≥0,σ∈∆

cn,σ · σ ·Xn ∈ Cp[∆][[X]] : sup
n

|cn,σ|p
nr

<∞ ∀σ ∈ ∆


where | · |p is the p-adic norm on Cp such that |p|p = p−1 (the corresponding

valuation is written as vp). We write H∞ = ∪r≥0Hr and

Hr(G∞) = {f(γ − 1) : f ∈ Hr}
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for r ∈ R≥0 ∪ {∞}. In other words, the elements of Hr (respectively Hr(G∞))

are the power series in X (respectively γ − 1) over Cp[∆] with growth rate

O(logrp). If F,G ∈ H∞ are such that F = O(G) and G = O(F ), we write

F ∼ G.

We write the additive Fourier transform on H∞(G∞) as

M : H∞(G∞) → Cp ⊗ Bψ=0
rig,Qp

f(γ − 1) 7→ f(γ − 1) · (1 + π).

We identify H∞(G∞) with its image under M. In particular, Λ is identified

with A+,ψ=0
Qp , ΛQp with B+,ψ=0

Qp , etc.

1.3.5 Modular forms

Let f =
∑
anq

n be a normalised eigen-newform of weight k ≥ 2, level N and

character ε. Write Ff = Q(an : n ≥ 1) for its coefficient field. Let f̄ =
∑
ānq

n

be the dual form to f , we have Ff = Ff̄ .

We write L(f, s) for the complex L-function of f . If θ is a finite character

of G∞, we write L(fθ, s) for the twisted L-function of f by θ.

We assume that p - N and fix a prime of F above p. We denote the com-

pletion of Ff at this prime by E and fix a uniformiser $. We write Vf for

the 2-dimensional E-linear representation of GQ associated to f from [Del69].

When restricted to GQp , Vf is crystalline and its de Rham filtration is given by

Di(Vf ) =

 D(Vf ) if i ≤ 0
Eω if 1 ≤ i ≤ k − 1
0 if i ≥ k

(1.4)

for some 0 6= ω ∈ D(Vf ). Hence, the Hodge-Tate weights of Vf are 0 and 1− k.

The action of ϕ on D(Vf ) satisfies ϕ2 − apϕ+ ε(p)pk−1 = 0.

If v ∈ Vf , we write v± for the component of v on which the complex conju-

gation acts by ±1.



Chapter 2

Construction of the
Coleman maps

In this chapter, we define the plus and minus Coleman maps for a modular form

f as in Section 1.3.5 under the following condition:

• Assumption (1): ap = 0 and the eigenvalues of ϕ on D(Vf ) are not

integral powers of p.

We first review the definition of Perrin-Riou’s exponential from [PR94] for

general crystalline representations and results of Kato [Kat04] on general modu-

lar forms. We then prove a divisibility property of the image of the Perrin-Riou

pairing under assumption (1) in order to define Col±.

2.1 Perrin-Riou’s exponential

Throughout this section, we fix V a crystalline p-adic representation of GQp

such that the action of ϕ on D(V ) has no eigenvalues which are integral powers

of p. Let j be an integer. Since ϕ acts on t via multiplication by p and

D(V (j)) = t−jD(V )⊗ ej ,

the eigenvalues of ϕ on D(V (j)) are not integral powers of p either.

Since V (j)GQp,∞ is also a crystalline representation, it is a sum of characters.

But a character is crystalline iff it is the product of an unramified character and a

power of χ (see for example [Bre01, Example 3.1.4]). Therefore, our assumption

on the eigenvalues of ϕ implies that V (j)GQp,∞ = 0.

11
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For each j ∈ Z and n ≥ 0, under our assumptions on the eigenvalues of ϕ,

the exponential map expn,j induces an isomorphism

expn,j : Qp,n ⊗ D(V (j))/D0(V (j))→ H1
f (Qp,n, V (j)).

When n ≥ 1, there is a well-defined map

Ξn,V (j) : D∞(V (j)) → Qp,n ⊗ D(V (j))

g 7→ (p⊗ ϕ)−nG(ζpn − 1)

whereG ∈ B+
rig,Qp⊗D(V (j)) is such that (1−ϕ)G = g (see [PR94, Section 3.2.2]).

Moreover, (expn,j ◦Ξn,V (j))n≥1 are compatible with the corestriction maps. In

other words, the following diagram commutes:

D∞(V (j))

expn,j ◦Ξn,V (j) ++XXXXXXXXXXXXXXXXXXXXXXXXX
expn+1,j ◦Ξn+1,V (j) // H1(Qp,n+1, V (j))

corn+1/n

��
H1(Qp,n, V (j)).

The definition of the Perrin-Riou exponential is given by the following the-

orem, which is the main result of [PR94].

Theorem 2.1.1. Let h be a positive integer such that D−h(V ) = D(V ). Then,

for all integers j ≥ 1− h, there is is a unique family of Λ-homomorphisms

ΩV (j),h+j : D∞(V (j))→ H∞(G∞)⊗
Λ

H1
Iw(T (j))

such that the following diagram commutes:

D∞(V (j))
ΩV (j),h+j //

Ξn,V (j)

��

H∞(G∞)⊗
Λ

H1
Iw(T (j))

pr

��
Qp,n ⊗ D(V (j))

(h+j−1)! expn,j // H1(Qp,n, V (j))

where n ≥ 1 and pr stands for projection. Moreover, we have

Tw1,V (j) ◦ΩV (j),h+j ◦ (∂ ⊗ te−1) = −ΩV (j+1),h+j+1.

Proof. [PR94, Section 3.2.3]

Remark 2.1.2. By [PR94, Section 3.2.4], if g ∈ B+,ψ=0
Qp ⊗ Dα(V (j)) where

Dα(V (j)) is the subspace of D(V (j)) in which ϕ has slope α, then ΩV (j),h+j(g)

is O(logh+α
p ), i.e. contained in Hh+α(G∞)⊗H1

Iw(T (j)).



CHAPTER 2. CONSTRUCTION OF THE COLEMAN MAPS 13

Remark 2.1.3. The theorem also implies the following congruence for r ≥ 0:

(−1)r Twr,V (j)(ΩV (j),h+j(g)) ≡

(h+ j + r − 1)! expn,j+r ◦Ξn,V (j+r) ◦ (∂−r ⊗ t−rer)(g) mod (γp
n−1
− 1).

2.2 Perrin-Riou’s pairing

Let M be a finite extension of Qp and we further assume that V is a vector

space over M and the action of GQp is compatible with the multiplication by

M , i.e. V is a M -linear representation of GQp .

We fix T an OM -lattice of V which is stable under GQp . We write V ∗ for

the M -linear dual of V and T ∗ for the OM -linear dual of T . Since H1(Qp,n, T )

and H1(Qp,n, T
∗(1)) are OM [Gn]-modules, H1

Iw(T ) and H1
Iw(T ∗(1)) are ΛM -

modules. By [PR94, Section 3.6.1], there is a non-degenerate pairing

<,>: H1
Iw(T )×H1

Iw(T ∗(1)) → ΛOM

((xn)n, (yn)n) 7→

( ∑
σ∈Gn

[xσn, yn]n · σ

)
n

where [, ]n is the natural pairing

H1(Qp,n, T )×H1(Qp,n, T
∗(1))→ OM .

The pairing <,> extends to(
H∞(G∞) ⊗

ΛOM

H1
Iw(T )

)
×

(
H∞(G∞) ⊗

ΛOM

H1
Iw(T ∗(1))

)
→ H∞(G∞),

which we also denote by <,>. Let j and h be integers satisfying conditions of

Theorem 2.1.1. If η ∈ D(V (j)), then (1 +π)⊗ η ∈ D∞(V (j)). Using the pairing

<,>, we define a map:

Lh,jη : H1
Iw(T (j)∗(1)) → H∞(G∞)

z 7→ < ΩV (j),h+j((1 + π)⊗ η), z > .

Note that Lh,jη modulo Γp
n−1 − 1 induces a map into M [Gn], which we denote

by Lh,jη,n. Also, Lh,jη extends naturally to a map on H1
Iw(V (j)∗(1)), which we

write as Lh,jη also.
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2.2.1 Explicit formulae of Lh,jη,n

The following result is possibly well-known. Due to the lack of reference, we

include the proof here for completeness.

Lemma 2.2.1. Under the notation above, let η ∈ D(V (j)). Then, the projection

of
1

(h+ j − 1)!
ΩV (j),h+j((1 + π)⊗ η)

into H1(Qp,n, V (j)) is given by p−n expn,j
(∑n−1

m=0 ζpn−m ⊗ ϕm−n(η) + (1− ϕ)−1(η)
)

if n ≥ 1

exp0,j

((
1− ϕ−1

p

)
(1− ϕ)−1(η)

)
if n = 0.

(2.1)

Proof. Let g ∈ D∞(V (j)). We write ∆i(g) = ∂i(g)(0) for i ∈ Z and

g̃ = g −
h∑
i=0

1
i!

logip(1 + π)⊗∆i(g).

By [PR94, Section 2.2], the sum
∑∞
n=0 ϕ

n(g̃) converges. Let

G =
∞∑
n=0

ϕn(g̃) +
h∑
i=0

1
i!

logip(1 + π)⊗ vi

where vi ∈ D(V (j)) is such that ∆i(g) = (1 − piϕ)vi (such vi exist by our

assumption on the eigenvalues of ϕ), then (1 − ϕ)G = g. For g = (1 + π) ⊗ η,

we have ∆i(g) = η and vi = (1 − piϕ)−1η for all i. If n is a positive integer, a

simple calculation shows that

ϕm(g̃)(ζpn − 1) =
{

(ζpn−m − 1)⊗ ϕm(η) if m < n
0 otherwise. (2.2)

Therefore, we have

G(ζpn − 1) =
n−1∑
m=0

(ζpn−m − 1)⊗ ϕm(η) + (1− ϕ)−1(η)

=
n−1∑
m=0

ζpn−m ⊗ ϕm(η) + (1− ϕ)−1ϕn(η)

Hence, by Theorem 2.1.1, the nth projection of ΩV (j),h+j(g)/(h+j−1)! is given

by the image of

(p⊗ ϕ)−nG(ζpn − 1) =
1
pn

(
n−1∑
m=0

ζpn−m ⊗ ϕm−n(η) + (1− ϕ)−1(η)

)
(2.3)
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under the exponential map expn,j . For the 0th level, it is given by the image of

Tr1/0

(
1
p
ϕ−1G(ζp − 1)

)
=

1
p

Tr1/0

(
ζp ⊗ ϕ−1(η) + (1− ϕ)−1(η)

)
=

1
p

(
−1⊗ ϕ−1(η) + (p− 1)(1− ϕ)−1(η)

)
=

(
1− ϕ−1

p

)
(1− ϕ)−1(η)

under the map exp0,j , so we are done.

For n ≥ 1 and η ∈ D(V (j)), we write

γn,j(η) := p−n

(
n−1∑
i=0

ζpn−i ⊗ ϕi−n(η) + (1− ϕ)−1(η)

)
.

Remark 2.1.3 and properties of the twist map (see e.g. [PR94, Sections 3.6.1

and 3.6.5]) implies that for z ∈ H1
Iw(T (j)∗(1)) and r ≥ 0,

1
(h+ j + r − 1)!

Twr(Lh,jη (z))

≡
∑
σ∈Gn

[
expn,j+r(γn,j+r(ηr)

σ), z−r,n
]
n
· σ mod (γp

n−1
− 1)

(2.4)

where Twr acts on H∞(G∞) via σ 7→ χ(σ)rσ for σ ∈ G∞ and z−r,n is the image

of z under the composition

H1
Iw(T (j)∗(1))

(−1)r Tw−r
−−−−−−−−→ H1

Iw(T (j + r)∗(1))
pr−→ H1(Qp,n, T (j + r)∗(1)).

By [Kat93, Chapter II, Section 1.4], we also have

[
expn,j+r(·), ·

]
n

= Trn/0⊗ id
([
·, exp∗n,j+r(·)

]′
n

)
where exp∗n,j+r is the dual exponential map

exp∗n,j+r : H1(Qp,n, V (j + r)∗(1))→ D0(V (j + r)∗(1))

and the pairing

[, ]′n : Qp,n ⊗ D(V (j + r))×Qp,n ⊗ D(V (j + r)∗(1))→ Qp,n ⊗M (2.5)

is induced by the natural pairing

D(V (j + r))× D(V (j + r)∗(1))→M.
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To ease notation, we simply write [, ]n for [, ]′n when it does not cause confusion.

We can now rewrite (2.4) as:

1
(h+ j + r − 1)!

Twr(Lhη(z))

≡
∑
σ∈Gn

Trn,0
[
γn,j+r(ηr)σ, exp∗n,j+r(z−r,n)

]
n
· σ mod (γp

n−1
− 1)

≡

[ ∑
σ∈Gn

γn,j+r(ηr)σσ,
∑
σ∈Gn

exp∗n,j+r(z
σ
−r,n)σ−1

]
n

mod (γp
n−1
− 1).

(2.6)

Note that we have recovered the pairing Pn of [Kur02]. We write the quantity

in (2.6) as Pn,r(η, z−r,n). Following the calculations of [Kur02], we can deduce

the following special values of Lh,jη :

Lemma 2.2.2. For an integer r ≥ 0, we have

1
(h+ j + r − 1)!

χr
(
Lh,jη (z)

)
=

[(
1− ϕ−1

p

)
(1− ϕ)−1(ηr), exp∗0,r+j(z−r,0)

]
0

.

Let θ be a character of Gn which does not factor through Gn−1 with n ≥ 1, then

1
(h+ j + r − 1)!

χrθ
(
Lh,jη (z)

)
=

1
τ(θ−1)

∑
σ∈Gn

θ−1(σ)
[
ϕ−n(ηr), exp∗n,r+j(z

σ
−r,n)

]
n

where τ denotes the Gauss sum.

2.3 Modular forms and Kato zeta elements

The details of the results in this section can be found in [Kat04].

2.3.1 L-functions and p-adic L-functions

Let f be as in Section 1.3.5. For any v ∈ Vf such that v± 6= 0, it determines a

lattice OE-lattice Tf of Vf . We choose v such that Tf is stable under GQ. Note

that as a representations of GQ, V ∗f ∼= Vf̄ (k−1). Hence, Tf determines a lattice

Tf̄ of Vf̄ naturally.

Let

per : D1(Vf )→ Vf
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be the period map defined in [Kat04]. Fix 0 6= ω ∈ D1(Vf ) and let Ω± ∈ C×

such that per(ω) = Ω+v
+ + Ω−v−. The p-adic L-functions associated to f are

given by the following.

Theorem 2.3.1. Let α be a root of X2−apX+ε(p)pk−1 such that vp(α) < k−1.

Under the notation above, there exists a unique Lp,α ∈ H∞(G∞) (depending on

the choice of ω and v) such that for any integer 0 ≤ r ≤ k−2 and any character

θ of Gn which does not factor through Gn−1 with n ≥ 1,

χrθ(Lp,α) =
cn,rα

−n

τ(θ)Ω±
L(f, θ, r)

where cn,r is some constant, only dependent on n and r and ± = (−1)k−rθ(−1).

Proof. [AV75], [MTT86] or [Kat04, Theorem 16.2].

If f corresponds to an elliptic curve Ef over Q, there is a canonical choice

of ω and Tf , namely, the Néron differential and Tp(Ef )(−1) (see [Kur02, Sec-

tion 2.2.2]) where Tp(Ef ) denotes the Tate module of Ef at p.

2.3.2 Kato’s main conjecture

In order to state Kato’s main conjecture, we have to review two important

results from [Kat04] first.

Theorem 2.3.2. Under the notation above, we have:

(a) H2(Tf ) is a torsion ΛOE -module.

(b) H1(Tf ) is a torsion free ΛOE -module and H1(Vf ) is a free ΛE-module of

rank 1.

Proof. [Kat04, Theorem 12.4]

Theorem 2.3.3. Fix a character δ : ∆→ Z/(p− 1)Z.

(a) Let θ be a character of Gn and ± = (−1)k−rθ(−1) where r is an integer

such that 1 ≤ r ≤ k − 1. Write

κθ : Qp,n ⊗ D0(Vf (k − r)) → Vf

x⊗ y 7→
∑
σ∈Gn

θ(σ)σ(x)per(y)±.
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There exists a unique E-linear map (independent of θ and r)

Vf → H1(Vf ); v 7→ zv

such that κθ sends the image of zv in Qp,n ⊗ D0(Vf (k − r)) (under the

composition of the localisation, the twist map and the dual exponential) to

dr · L(f̄ , θ, r) · v±

and dr is a constant which only depends on r.

(b) Let Z(Tf ) ⊂ H1(Vf ) denote the ΛOE -module generated by zv± ∈ Tf and

write Z(Vf ) = Z(Tf ) ⊗ Q. Then, the quotient H1(Vf )/Z(Vf ) is a torsion

ΛE-module and

CharΓE (H1(Vf )δ/Z(Vf )δ) ⊂ CharΓE (H2(Vf )δ).

(c) If the homomorphism GQ → GLOE (Tf ) is surjective, then Z(Tf ) ⊂ H1(Tf ).

Moreover, H1(Tf ) is a free ΛOE -module of rank 1 and

CharΓOE
(H1(Tf )δ/Z(Tf )δ) ⊂ CharΓOE

(H2(Tf )δ).

Proof. [Kat04, Theorem 12.5]

Kato’s main conjecture states that:

Conjecture 2.3.4. The inclusion Z(Tf ) ⊂ H1(Tf ) holds. Moreover, if δ : ∆→

Z/(p− 1)Z is a character, then

CharΓOE
(H1(Tf )δ/Z(Tf )δ) = CharΓOE

(H2(Tf )δ).

We call elements of Z(Vf ) Kato zeta elements. In particular, we write zKato
f

for the one corresponding to our choice of v ∈ Vf fixed in Section 2.3.1 and call

it the Kato zeta element associated to f .

We fix v̄ ∈ Vf̄ and ω̄ ∈ D−1(Vf̄ (k)) for the dual form f̄ similarly. Below, we

relate the Kato zeta element zKato
f̄

associated to f̄ to the p-adic L-functions of

f defined by Theorem 2.3.1 via the map Lh,jη . For simplicity, we write zKato =

zKato
f̄

from now on.
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Let V = Vf (1), then we can take h = 1 and j ≥ 0 in Theorem 2.1.1 by (1.4).

For η ∈ D(Vf ), we simply write

Lη = L1,0
η1

: H1
Iw(Tf̄ (k − 1))→ H∞(G∞) (2.7)

for the map we defined in Section 2.2, with M = E.

Theorem 2.3.5. For α as in Theorem 2.3.1, there exists ηα, an eigenvector

of ϕ on D(Vf ) with eigenvalue α such that [ηα, ω̄] = 1. Moreover, the image of

zKato under the composition

H1(Vf̄ )→ H1
Iw(Vf̄ )

Twk−1−→ H1
Iw(Vf̄ (k − 1))

Lηα−→ H∞(G∞)

is the p-adic L-function Lp,α where the first map is just the localisation and

Twk−1 denotes Twk−1,Vf̄ .

Proof. [Kat04, Theorem 16.6]

We sometimes abuse notation and write the above composition as Lηα also.

Remark 2.3.6. Let α1 and α2 be the roots of X2 − apX + ε(p)pk−1. Then,

the slope of ϕ on D(Vf ) is equal to t = max(vp(α1), vp(α2)). Since h = 1

and the slope of ϕ on D(Vf (1)) is t− 1, all elements of Im(Lη) are O(logtp) by

Remark 2.1.2.

It follows immediately from Lemma 2.2.2 that, with the same notation as in

the lemma, we have:

χr(Lη((z)) = r!
[(

1− ϕ−1

p

)
(1− ϕ)−1(ηr+1), exp∗0,r+1(z−r,0)

]
0

,

χrθ(Lη((z)) =
r!

τ(θ−1)

∑
σ∈Gn

θ−1(σ)
[
ϕ−n(ηr+1), exp∗n,r+1(zσ−r,n)

]
n
.

(2.8)

2.4 The ±-Coleman maps

2.4.1 ±-logarithms

Let f be as above such that assumption (1) holds. If α1 and α2 are the roots of

X2 − apX + ε(p)pk−1, then α1 = −α2. Moreover, vp(α1) = vp(α2) = (k − 1)/2,

so Remark 2.3.6 implies that Im(Lη) ⊂ H(k−1)/2(G∞) for any η ∈ D(Vf ).
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In [Pol03], Pollack defines:

log+
p,k =

k−2∏
j=0

1
p

∞∏
n=1

Φ2n(u−jγ)
p

,

log−p,k =
k−2∏
j=0

1
p

∞∏
n=1

Φ2n−1(u−jγ)
p

,

where Φm denotes the pmth cyclotomic polynomial.

By considering the special values of Lp,α1 and Lp,α2 as given by Theo-

rem 2.3.1, Pollack shows that we have the following divisibility properties over

H∞(G∞) ∩ E[∆][[γ − 1]]:

log+
p,k | α2Lp,α1 − α1Lp,α2 ,

log−p,k | Lp,α2 − Lp,α1 .

This enables him to define

L+
p,f =

α2Lp,α1 − α1Lp,α2

(α2 − α1) log+
p,k

, (2.9)

L−p,f =
Lp,α2 − Lp,α1

(α2 − α1) log−p,k
. (2.10)

It is easy to see that this gives a decomposition of Lp,αi , namely

Lp,αi = log+
p,k L

+
p,f + αi log−p,k L

−
p,f (2.11)

for i ∈ {1, 2}.

To ease notation, we suppress the subscript f and write L±p for L±p,f . The

growth rates of these elements are given by:

Theorem 2.4.1. log+
p,k ∼ log−p,k ∼ log

k−1
2

p and L±p = O(1).

Proof. [Pol03, Lemma 4.5 and Theorem 5.1]

2.4.2 Definition of the Coleman maps

Recall that Lηαi (z
Kato) = Lp,αi for i = 1, 2 by Theorem 2.3.5. Hence, if we

write

η+ =
α2ηα1 − α1ηα2

α2 − α1
and η− =

ηα2 − ηα1

α2 − α1
,

then Lη±(zKato) = log±p,k L
±
p by (2.9), (2.10) and the linearity of L. In fact,

more is true:
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Proposition 2.4.2. If z ∈ H1
Iw(Tf̄ ), then we have the divisibility log±p,k |Lη±(z)

over H∞(G∞) ∩ E[∆][[γ − 1]].

Proof. Recall that [ω, ω̄] = 0, [ηαi , ω̄] = 1 and ϕ2 = α2
i on D(Vf ). Therefore,

explicit calculation shows that

ηαi = (ϕ(ω) + αiω)/[ϕ(ω), ω̄]

for i ∈ {1, 2}. Hence,

η+ =
ϕ(ω)

[ϕ(ω), ω̄]
and η− =

ω

[ϕ(ω), ω̄]
.

Let r be an integer. Since ϕ2 = −ε(p)pk−2r−3 on D(Vf (r + 1)), we have

ϕ−n(η+
r+1) ≡ 0 mod ω if n is odd,

ϕ−n(η−r+1) ≡ 0 mod ω if n is even.

For 0 ≤ r ≤ k − 2, we have

Im(exp∗n,r+1) = Qp,n ⊗ E · ω̄−r−1 = Qp,n ⊗ D0(Vf̄ (k − 1− r))

and

D0(Vf (r + 1)) = E · ωr+1.

Hence, the fact that D0(Vf (r + 1)) and D0(Vf̄ (k − 1− r)) are orthogonal com-

plements of each other under [, ] and (2.8) implies

χrθ(Lη+(z)) = 0 if n is odd,

χrθ(Lη−(z)) = 0 if n is even

where θ and n are as defined in Lemma 2.2.2. Recall that χ(γ) = u, so we have

equivalences χrθ(Φm(u−rγ)) = Φm(θ(γ)) = 0 iff θ(γ) is a primitive pmth root

of unity iff θ factors through Gm+1 but not Gm. Hence all the zeros of log±p,k,

which are all simple, are also zeros of Lη±(z), so we are done.

Remark 2.4.3. An alternative proof for this proposition is given in Section 4.1.

Recall that Lη±(z) = O(log
k−1

2
p ) and Theorem 2.4.1 says that log±p,k ∼

log
k−1

2
p , so we have Lη±(z)/ log±p,k = O(1). We define

Col± : H1
Iw(Tf̄ (k − 1)) → ΛE

z 7→
Lη±(z)
log±p,k

.
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We call these two maps the plus and minus Coleman maps. Note that we

sometimes abuse notation and write Col± for the composition

H1(Tf̄ )→ H1
Iw(Tf̄ )

Twk−1−→ H1
Iw(Tf̄ (k − 1)) Col±−→ ΛE

and its natural extension to H1(Vf̄ ). In particular, we have Col±(zKato) = L±p .

Similar to Lη±,n, we write Col±n for the map Col± modulo Γp
n−1 − 1.

Remark 2.4.4. The Coleman maps in [Kob03] are defined using a pairing with

points coming from the formal group associated to an elliptic curve, instead of

images of the Perrin-Riou exponential. It is not hard to see that the defini-

tion given above agrees with the one given by Kobayashi on comparing [Kob03,

Proposition 8.25] and (2.6).

2.5 The case k = 2

Let f be a modular form as in Section 1.3.5 with k = 2. We temporarily remove

the condition ap = 0 in assumption (1) and replace it by vp(ap) ≥ 2 (so that

vp(α) = vp(β) = 1/2) in the rest of this section. The aim of this section is to

rewrite Sprung’s construction of the Coleman maps for elliptic curves over Q

with ap 6= 0 using the Perrin-Riou pairing.

Define for n ≥ 1(
Θ1
n Υ1

n

Θ0
n Υ0

n

)
=
(

0 Φn(γ)
−1 ap

)
· · ·
(

0 Φ1(γ)
−1 ap

)
∈M(2,H(G∞)).

It satisfies the following.

Lemma 2.5.1. Let i ∈ Z and write

Ain =
(

0 p
−1 ap

)i(Θ1
n Υ1

n

Θ0
n Υ0

n

)
.

Then, Ai−nn converges in M(2,H(G∞)) as n → ∞ for any fixed i. Write Ai∞

for the limit, then all entries of Ai∞ are O(log1/2
p ). Moreover, if θ is a character

on G∞ which factors through Gn but not Gn−1, then θ(Ai∞) = θ(Ai−mm ) for all

m ≥ n− 1.

Proof. [Spr09, Lemma 3.21]



CHAPTER 2. CONSTRUCTION OF THE COLEMAN MAPS 23

Proposition 2.5.2. For any z ∈ H1
Iw(Vf̄ (1)) and 0 6= ω ∈ D1(Vf ), the entries

of the row vector (
Lϕ(ω)(z) −Lω(z)

)
A−1
∞

are both divisible by logp(γ)/(γ − 1).

Proof. For n ∈ Z, write

un =
αn − βn

α− β

where α and β are the roots of X2 − apX + ε(p)p. Then,

ϕn = unϕ− pun−1 (2.12)

on D(Vf ) and (
0 p
−1 ap

)n
=
(
−pun−1 pun
−un un+1

)
.

Therefore, if n > 1 and θ is a character of G∞ which factors through Gn but

not Gn−1 (so θ(γ) is a primitive pn−1th root of unity), we have

θ(A−1
∞ ) = θ(A−nn−1) =

(
−pu−n−1 pu−n
−u−n u−n+1

)(
0 0
−1 ap

)
θ

(
Θ1
n−2 Υ1

n−2

Θ0
n−2 Υ0

n−2

)
(2.13)

where the last matrix is the identity if n = 2.

To prove the proposition, it is equivalent to proving that

θ
( (
Lϕ(ω)(z) −Lω(z)

)
A−1
∞

)
= 0 (2.14)

for any θ as above. By Lemma 2.2.2, we have

θ(Lv(z)) =
1

τ(θ−1)

∑
σ∈Gn

θ−1(σ)[ϕ−n(v1), exp∗n,1(zσn)]n

for any v ∈ D(Vf ) and z ∈ H1
Iw(Vf̄ (1)). Hence, by (2.13) and the proof of

Proposition 2.4.2, in order to show that (2.14) holds, it suffices to show that

(
ϕ−n(ϕ(ω)1) −ϕ−n(ω1)

)(−pu−n−1 pu−n
−u−n u−n+1

)(
0 0
−1 ap

)
is congruent to 0 modulo D0(Vf (1)). But this follows easily from the fact that

( 1
pu−n+1 −u−n

)(−pu−n−1 pu−n
−u−n u−n+1

)(
0 0
−1 ap

)
= 0

and (2.12), so we are done.
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By Remark 2.3.6, the image of Lv is O(log1/2
p ) for any v ∈ D(Vf ), so we

obtain two Coleman maps:

Definition 2.5.3. For ∗ = ϑ, υ and z ∈ H1
Iw(Vf̄ (1)), Col∗(z) ∈ ΛE is defined

by

(
Colϑ(z) Colυ(z)

)
· logp(γ)/(γ − 1) =

(
Lϕ(ω)(z) −Lω(z)

)
A−1
∞ . (2.15)

In particular, we can define two p-adic L-functions

L∗p = Col∗(zKato) ∈ ΛE

where ∗ = ϑ, υ.

On choosing [ϕ(ω), ω̄] = 1 for simplicity, we have, under the notation of

Theorem 2.3.5,

ηα = ϕ(ω)− βω and ηβ = ϕ(ω)− αω.

Note that det(A−1
∞ ) = logp(γ)/(γ − 1), we therefore obtain a decomposition:

Lp,α = (Υ0
∞ − βΥ1

∞)Lϑp − (Θ0
∞ − βΘ1

∞)Lυp (2.16)

Lp,β = (Υ0
∞ − αΥ1

∞)Lϑp − (Θ0
∞ − αΘ1

∞))Lυp (2.17)

where A−1
∞ =

(
Θ1
∞ Υ1

∞
Θ0
∞ Υ0

∞

)
. This generalises (2.11).

Remark 2.5.4. The results above hold for any modular forms of weight 2. This

setting is slightly more general than that in [Spr09].



Chapter 3

Kernels of the Coleman
maps

In addition to assumption (1), we assume the following holds.

• Assumption (2): p ≥ k − 1.

Under these two conditions (which we assume to hold until the end of Chap-

ter 6), we give an explicit description of the kernels of the plus and minus Cole-

man maps defined in Chapter 2. In particular, we generalise [Kob03, Propo-

sition 8.18], which describe the kernels of Col± in the case of elliptic curves

defined over Q.

3.1 Properties of H1

Recall that when f corresponds to an elliptic curve Ef over Q and Tf (1) is the

Tate module of Ef , we have Ef [p∞] ∼= Vf/Tf (1) as GQ-modules. Therefore, the

following lemma generalises [Kob03, Proposition 8.7], which says that Ef has

no p-torsion defined over Q∞.

Lemma 3.1.1. For all j ∈ Z and n ≥ 0, (Vf/Tf )(j)GQp,n = 0.

Proof. It is enough to show that (Vf/Tf )GQp,∞ = 0. Since Vf/Tf = lim
←−
×$

Tf/$
nTf ,

it in fact suffices to show that (Tf/$Tf )GQp,∞ = 0.

By assumption (2), a result of Fontaine (a proof can be found in [Edi92])

says that

ρf |I =
(
ψk−1 0

0 ψ′k−1

)

25
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where ρf is the representation GQ → GL(Tf/$Tf ), I is the inertia group of

GQp and ψ and ψ′ are fundamental characters of level 2, i.e.

kerψ = kerψ′ = GQur
p ( p

2−1√p).

Hence, if σ ∈ Gal(Qur
p ( p2−1

√
p)/Qur

p ( p−1
√
p)), 1 is not an eigenvalue of ρf (σ), as

p + 1 - k − 1 by assumption (2). Hence, there exists an element in the above

Galois group which lifts to GQp,∞ and (Tf/$Tf )GQp,∞ = 0 as required.

We now give two immediate corollaries.

Corollary 3.1.2. The projection H1
Iw(Tf̄ (j)) → H1(Qp,n, Tf̄ (j)) is surjective

for all j and n.

Proof. It is enough to show that

corn/m : H1(Qp,n, Tf̄ (j))→ H1(Qp,m, Tf̄ (j))

is surjective for all n ≥ m. On taking Pontryagin dual, it is equivalent to

showing that

resm/n : H1(Qp,m, Vf/Tf (k − 1− j))→ H1(Qp,n, Vf/Tf (k − 1− j))

is injective. But this immediately follows from the inflation-restriction exact

sequence and Lemma 3.1.1, which says that Vf/Tf (k − 1− j)GQp,∞ = 0.

Corollary 3.1.3. For all n and j as above, H1(Qp,n, Tf (j)) ↪→ H1(Qp,n, Vf (j)).

Proof. From the short exact sequence 0→ Tf (j)→ Vf (j)→ Vf/Tf (j)→ 0, we

obtain a long exact sequence

· · · → (Vf/Tf (j))GQp,n → H1(Qp,n, Tf (j))→ H1(Qp,n, Vf (j))→ · · · .

Hence the result by Lemma 3.1.1.

In particular, H1(Qp,n, Tf (j)) can be identified as an OE-lattice of the E-

vector space H1(Qp,n, Vf (j)).

Another property of H1 which we need is the injectivity of the restriction

H1(Qp,m, Vf (j)) res−→ H1(Qp,n, Vf (j))

for n ≥ m. But this follows easily from the inflation-restriction sequence and

the fact that Vf (j)GQp,∞ = 0 (immediate from Lemma 3.1.1). In particular,

the same can be said about H1
f . We regard H1

f (Qp,m, A) as a subgroup of

H1
f (Qp,n, A) for A = Tf (j) or Vf (j) in the next section.
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3.2 Some subgroups of H1
f

Let η± be as defined in Chapter 2. For 1 ≤ j ≤ k − 1, we define two E[Gn]-

modules

R+
n,j =

∑
σ∈Gn

E · γn,j(η+
j )σ mod ω ⊂ Qp,n ⊗ D(Vf (j))/D0(Vf (j)),

R−n,j =
∑
σ∈Gn

E · γn,j(η−j )σ mod ω ⊂ Qp,n ⊗ D(Vf (j))/D0(Vf (j)).
(3.1)

Remark 3.2.1. For 1 ≤ j ≤ k − 1, we have isomorphisms of E[Gn]-modules

H1
f (Qp,n, Vf (j)) ∼= Qp,n ⊗

Qp
D(Vf (j))/D0(Vf (j)) ∼= Qp,n ⊗ E.

Under this identification, the corestriction map

corn/m : H1
f (Qp,n, Vf (j))→ H1

f (Qp,m, Vf (j))

corresponds to the trace map

Trn/m⊗ id : Qp,n ⊗ E → Qp,m ⊗ E.

By Remark 3.2.1, we can identify R±n,j with subsets of Qp,n⊗E and we have

the following description.

Lemma 3.2.2. By identifying Qp,n⊗D(V (j))/D0(V (j)) with Qp,n⊗E, we have

R+
n,j =

∑
m even

∑
σ∈Gm

E · ζσpm + E,

R−n,j =
∑
m odd

∑
σ∈Gm

E · ζσpm + E
(3.2)

where m ≤ n in the summands.

Proof. Recall that

γn,j = p−n

(
n−1∑
i=0

ζpn−i ⊗ ϕi−n + (1− ϕ)−1

)

and η± are given by the following:

η+ =
ϕ(ω)

[ϕ(ω), ω̄]
and η− =

ω

[ϕ(ω), ω̄]
.

Hence, we can apply Corollary A.2.1 to R±n,j provided that

(p− 1)(1− ϕ)−1(η±j ) 6≡ ϕ−1(η±j ) mod ω,
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which can be checked under assumption (1) (see the proof of Proposition B.5.1

for details in a more general setting). The result then follows from the fact that

ϕm(ω) ≡ 0 mod ω iff m is an even integer (c.f. proof of Proposition 2.4.2).

In particular, on applying Lemmas A.1.1 and A.1.2 to (3.2), we have

R+
n,j +R−n,j = Qp,n ⊗ E and R+

n,j ∩R
−
n,j = E

under the identification given by Remark 3.2.1. Let

Q±p,n = {x ∈ Qp,n : Trn/m+1(x) ∈ Qp,m ∀m ∈ S±n }

where S±n are defined by

S+
n = {m ∈ [0, n− 1] : m even},

S−n = {m ∈ [0, n− 1] : m odd}.

Then, R±n,j can be identified with Q±p,n ⊗ E:

Lemma 3.2.3. For j and n as above, Q±p,n ⊗ E = R±n,j.

Proof. By (3.2), it is easy to check that R±n,j ⊂ Q±p,n ⊗ E, so

dimE R
±
n,j ≤ dimE

(
Q±p,n ⊗ E

)
.

Since R+
n,j +R−n,j = Qp,n ⊗ E, we have

Q+
p,n ⊗ E + Q−p,n ⊗ E = R+

n,j +R−n,j = Qp,n ⊗ E.

If x ∈ Q+
p,n∩Q−p,n, then Trn/m+1(x) ∈ Qp,m for all m ≤ n−1, hence x ∈ Qp.

Therefore, we have Q+
p,n ∩Q−p,n = Qp.

Hence, by the formula

dimA+ dimB = dim(A+B) + dim(A ∩B),

we have

dimE

(
Q±p,n ⊗ E

)
= dimE R

±
n,j

and we are done.

LetH1
f (Qp,n, Vf (j))± denote the image ofR±n,j under expn,j , then Remark 3.2.1

and Lemma 3.2.3 implies that it is equal to{
x ∈ H1

f (Qp,n, Vf (j)) : corn/m+1(x) ∈ H1
f (Qp,n, Vf (j)) ∀m ∈ S±n

}
.
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By Corollary 3.1.3, if we define

H1
f (Qp,n, Tf (j))± = H1

f (Qp,n, Vf (j))± ∩H1
f (Qp,n, Tf (j)),

then it is equal to

{
x ∈ H1

f (Qp,n, Tf (j)) : corn/m+1(x) ∈ H1
f (Qp,m, Tf (j)) ∀m ∈ S±n

}
generalising the definition of E± in [Kob03].

3.3 Description of the kernels

Let z ∈ H1
Iw(Tf̄ (k − 1)). Under the notation of Chapter 2, we have

Lη±(z) = O(log
k−1

2
p ),

so Lη±(z) = 0 iff

Pn,r(η±, z−r,n) = 0

for all n ≥ 0 and more than (k − 1)/2 different values of r with 0 ≤ r ≤ k − 2.

Recall that

Pn,r(·, z−r,n) = r!
∑
σ∈Gn

[
expn,r+1(γn,r+1(·)σ), z−r,n

]
n
σ.

Therefore, kerPn,r(η±, ·) is just the annihilator of

{
expn,r+1(γn,r+1(η±)σ) : σ ∈ Gn

}
under the pairing

H1(Qp,n, Vf (r + 1))×H1(Qp,n, Tf̄ (k − 1− r))→ E

which coincides with the annihilator of H1
f (Qp,n, Tf (r + 1))± under the pairing

H1(Qp,n, Tf (r + 1))×H1(Qp,n, Tf̄ (k − 1− r))→ OE . (3.3)

We denote this annihilator by H1
±(Qp,n, Tf̄ (k − 1− r)).

Define

H1
Iw,±(Tf̄ (k − 1− r)) = lim

←
H1
±(Qp,n, Tf̄ (k − 1− r)).
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As log±p,k 6= 0 and Lη± = log±p,k Col±, we have

kerLη± = ker
(
Col±

)
=
k−2⋂
r=0

Twr

(
H1

Iw,±
(
Tf̄ (k − 1− r)

))
by Corollary 3.1.2.

In fact, by the proposition below, it suffices to take just one term in the

intersection.

Proposition 3.3.1. Twr

(
H1

Iw,±
(
Tf̄ (k − 1− r)

))
= H1

Iw,±(Tf̄ (k − 1)) for all

integers r such that 0 ≤ r ≤ k − 2.

Proof. Since Col±(z) = O(1) for all z ∈ H1
Iw(Tf̄ (k−1)), it is uniquely determined

by its values at an infinite number of characters (see e.g. [Pol03, Lemma 3.2]).

Hence, if there exists a fixed r such that Pn,r(η±, zn,−r) = 0 for all n, then

Col±(z) = 0. Therefore, we have

ker(Col±) = Twr

(
H1

Iw,±
(
Tf̄ (k − 1− r)

))
and we are done.

Corollary 3.3.2. We have

kerLη± = ker
(
Col±

)
= Twr

(
H1

Iw,±
(
Tf̄ (k − 1− r)

))
for any integer 0 ≤ r ≤ k − 2.

3.4 Properties of the kernels

We have seen that ker(Col±) can be written in terms of H1
±, about which we

now say a little bit more.

3.4.1 A description using the dual exponential

Proposition 3.4.1. Let 0 ≤ r ≤ k − 2. For any x ∈ H1
f (Qp,n, Tf̄ (k − 1 − r))

and m ≤ n, write xm = exp∗m,r+1(corn/m(x)). Then, H1
±(Qp,n, Tf̄ (k − 1 − r))

coincides with the following set:{
x ∈ H1

f (Qp,n, Tf̄ (k − 1− r)) : x0 = 0 and xm =
xm−1

p
∀m ∈ S∓n

}
.
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Proof. On the one hand, (3.3) factors through

H1
f (Qp,n, Tf (1))×

H1(Qp,n, Tf̄ (k − 1))
H1
f (Qp,n, Tf̄ (k − 1))

→ Zp.

On the other hand, the pairing defined by (2.5) factors through(
Qp,n⊗D(Vf (r+ 1))/D0(Vf (r+ 1))

)
×
(
Qp,n⊗D0(Vf̄ (k−1− r))

)
→ Qp,n⊗E.

Hence, the compatibility of the two pairings, namely

[expn,r+1(·), ·]n = Trn/0⊗id[·, exp∗n,r+1(·)]′n,

implies that H1
±(Qp,n, Tf̄ (k − 1)) is the exp∗n,r+1-preimage of

(
Q±p,n ⊗ D(Vf (r + 1))/D0(Vf (r + 1))

)⊥
But we have:(

Q±p,n ⊗ D(Vf (r + 1))/D0(Vf (r + 1))
)⊥

=
(
Q±p,n

)⊥
⊗ D0(Vf̄ (k − 1− r))

where
(
Q±p,n

)⊥
is the orthogonal complement of Q±p,n under the pairing

Qp,n ×Qp,n → Qp

(x, y) 7→ Trn/0(xy).

By Corollary A.2.1, it is easy to check that

{x ∈ Qp,n : Trn/0(x) = 0 and Trn/m+1(x) ∈ Qp,m ∀m ∈ S∓n } ⊂
(
Q±p,n

)⊥
.

By comparing dimensions of the two subspaces (see the proof of Lemma 4.3.1

below for some explicit calculations), we see that equality holds and we are

done.

Hence, on combining this with Proposition 3.3.1, we have:

Corollary 3.4.2. Let z = (zn)n ∈ H1
Iw(Tf̄ (k − 1)), then Col±(z) = 0 iff

exp∗0,k−1(z0) = 0 and exp∗m,1(zm) =
1
p

exp∗m−1,1(zm−1)∀m ∈ S∓∞

where S±∞ = ∪n≥1S
±
n .
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3.4.2 Pontryagin duality

The Pontryagin duality gives a pairing:

H1(Qp,n, Vf/Tf (r + 1))×H1(Qp,n, Tf̄ (k − 1− r))→ E/OE . (3.4)

We can describe the annihilator of H1
±(Qp,n, Tf̄ (k − 1 − r)) under this pairing

explicitly:

Lemma 3.4.3. H1
f (Qp,n, Tf (r+ 1))±⊗E/OE ↪→ H1(Qp,n, Vf/Tf (r+ 1)) and it

can be identified as the annihilator of H1
±(Qp,n, Tf̄ (k − 1− r)) under (3.4).

Proof. By definitions, we have an exact sequence

0→ H1
±(Qp,n, Tf̄ (k − 1− r))→ H1(Qp,n, Tf̄ (k − 1− r))→

Hom(H1
f (Qp,n, Tf (r + 1))±,OE).

Taking Pontryagin duals, we have

H1
f (Qp,n, Tf (r + 1))±⊗E/OE → H1(Qp,n, Vf/Tf (r + 1))→

H1
±(Qp,n, Tf̄ (k − 1− r))∨ → 0.

Therefore, the second part of the lemma follows from the first. Recall that

(Vf/Tf (r + 1))GQp,n = 0 by Lemma 3.1.1, so we have

H1
f (Qp,n, Tf (r+1))⊗E/OE ↪→ H1

f (Qp,n, Vf/Tf (r+1)) ⊂ H1(Qp,n, Vf/Tf (r+1)).

Hence, it suffices to show that we have inclusion

H1
f (Qp,n, Tf (r + 1))±⊗E/OE ↪→ H1

f (Qp,n, Tf (r + 1))⊗E/OE .

But this follows from [Kob03, Lemma 8.17].

We write H1
f (Qp,n, Vf/Tf (j))± for H1

f (Qp,n, Tf (j))±⊗E/OE , which is iden-

tified as a subgroup of H1
f (Qp,n, Vf/Tf (j)). Note that it corresponds to the

definition of E±(Qp,n)⊗Qp/Zp given in [Kob03] and this is used to define Sel±p

in Chapter 5.



Chapter 4

Images of the Coleman
maps

In this chapter, we describe the images of Col± (under assumptions (1) and (2)).

By Corollary 3.1.2, any elements of H1(Qp,n, Tf̄ (k−1)) can be lifted to a global

element of H1
Iw(Tf̄ (k − 1)). Hence, we can in fact think of Lη±,n and Col±n as

maps from H1(Qp,n, Tf̄ (k − 1)) to E[Gn]. This allows us to give a description

of Im(Col±) by studying Im(Col±n ).

In [Kob03, Section 8], the images of the plus and minus Coleman maps for

elliptic curves over Q are shown to be the following:

Im(Col+) = (γ − 1)ΛOE +

(∑
σ∈∆

σ

)
ΛOE ,

Im(Col−) = ΛOE .

In particular, the ∆-invariant part of Im(Col±) is the whole of ΓOE . For a

general f , we unfortunately do not know whether the images of the Coleman

maps are inside ΛOE or not. However, after multiplying by a power of $, we will

show that the ∆-invariant part of Im(Col±) agree with the above descriptions

and the same can be said for the whole of Im(Col−).

4.1 Divisibility by Φm(γ)

We have seen that the image of Lη± is divisible by log±p,k. We give a necessary

and sufficient condition for such divisibility at the finite level below.

Recall that G∞ = Gal(Q∞/Q) ∼= ∆ × Γ where ∆ is a finite group of order

33
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p− 1, Γ ∼= Zp and γ is a fixed topological generator of Γ. We have

OE [Gn] ∼= OE [∆][γ]/(γp
n−1
− 1)

and

Φm(γ) = 1 + γp
m−1

+ γ2pm−1
+ · · ·+ γ(p−1)pm−1

.

Therefore, if m ≥ n, then Φm(γ) = p in OE [Gn], so we only consider m < n

here.

Lemma 4.1.1. Let m < n and

f =
∑

r mod pn−1

σ∈∆

cr,σ · σ · γr ∈ OE [Gn].

For each σ ∈ ∆ and r mod pm, write

br,σ = cr,σ + cr+pm,σ + · · ·+ cr−pm,σ.

Then, f is divisible by Φm(γ) in OE [Gn] iff br,σ = bs,σ whenever r ≡ s

mod pm−1.

Proof. Let f = gΦm(γ) and g =
∑
ar,σ · σ · γr ∈ OE [Gn]. Then the coefficient

of σγr in f is given by

ar,σ + ar−pm−1,σ + · · ·+ ar−(p−1)pm−1,σ.

Hence, br,σ as defined in the statement of the lemma is just the sum of the

coefficients as,σ of g with s ≡ r mod pm−1. Hence br,σ = bs,σ whenever r ≡ s

mod pm−1.

Conversely, let
∑
cr,σ · σ · γr ∈ OE [Gn] and define br,σ as in the statement

of the lemma. Assume that br,σ = bs,σ for all r ≡ s mod pm−1. Let fσ(γ) =∑
r cr,σ · γr, so f =

∑
fσ · σ. We have

fσ(ζpm) =
∑

r mod pm

 ∑
s≡r(pm)

cs,σ

 ζrpm

=
∑

r mod pm

br,σζ
r
pm

=
∑

s mod pm−1

bs,σ
∑

r≡s(pm−1)

ζrpm

= 0.

Hence, Φm(γ) divides f and we are done.
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Applying this to the image of Lη±,n, we have:

Corollary 4.1.2. For any z ∈ H1(Qp,n, Tf̄ (k − 1)), Lη±,n(z) is divisible by

Φm(γ) over E[Gn] if m ∈ S±n .

Proof. The image of Lη±,n(z) is given by the following composition

H1(Qp,n, Tf̄ (k − 1)) ∼−→ HomOE
(
H1(Qp,n, Tf (1)),OE

)
→ E[Gn]

where the first isomorphism is induced by the pairing (3.3) and the second map

is given by

HomOE
(
H1(Qp,n, Tf (1)),OE

)
→ E[Gn]

θ 7→
∑
τ∈Gn

θ(expn,1(γn,1(η±1 )τ )τ, (4.1)

with θ extended to an element of HomE(H1(Qp,n, Vf (1)), E) in the natural

way. Therefore, it is enough to show that γn,1(η±1 )τ mod ω, τ ∈ Gn satisfy the

relations described in Lemma 4.1.1. Let σ ∈ ∆. For η = η±, we write

ηr,σ =
∑

s≡r(pm)

γn,1(η1)σγ
s

= p−m−1
(
(1− ϕ)−1(η1) + ζp ⊗ ϕ−1(η1) + · · ·+ ζpm+1 ⊗ ϕ−m−1(η1)

)σγr
.

Therefore, if ϕ−m−1(η1) ≡ 0 mod ω, then ηr,σ = ηs,σ for r ≡ s mod pm−1, as

(ζpm)σγ
r

= (ζpm)σγ
s

. Hence, by the definitions of η± as given in the proof of

Proposition 2.4.2, we are done.

By considering its image modulo (u−jγ)p
n−1 − 1 similarly, one can deduce

Proposition 2.4.2. We can in fact say a bit more about the image of Lη+,n.

Lemma 4.1.3. With the notation above, if Lη+,n(z) =
∑
cr,σ · σ · γr, then∑

r cr,σ is independent of σ.

Proof. For each σ ∈ ∆, we have∑
r

γn,1(η+
1 )σγ

r

= p−1
(
(1− ϕ)−1(η+

1 ) + ζp ⊗ ϕ−1(η+
1 )
)σ
.

But ϕ−1(η+
1 ) ≡ 0 mod ω, so we are done.

We will see later on that these conditions in fact characterise the images of

Lη±,n completely.
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4.2 Images of log±p,k in OE[Gn]

We now fix an integer j such that 0 < j ≤ k − 2.

Lemma 4.2.1. Let x ∈ 1 + pZp. There exists a constant c such that for any

positive integer n, vp(xp
n − 1) = n+ c.

Proof. Let x = 1 +m where m ∈ pZp, so vp(m) ≥ 1. We have expansion

xp
n

− 1 = (1 +m)p
n

− 1 = mpn +
(

pn

pn − 1

)
mpn−1 + · · ·+

(
pn

1

)
m.

For r > 0, vp(
(
pn

r

)
) = n− vp(r), so

vp

((
pn

r

)
mr

)
= rvp(m)− vp(r) + n.

If r = psa where p - a and a > 1, then

vp

((
pn

r

)
mr

)
> vp

((
pn

ps

)
mps

)
.

Therefore, the set
{
vp

((
pn

r

)
mr
)

: r > 0
}

takes its minimum value at r = ps for

some s.

Consider the curve

f(t) = ptvp(m)− t, for t ∈ R.

It has a unique global minimum when pt = (vp(m) log p)−1, so the curve is

strictly increasing on t ≥ 0. Therefore, for a fixed n, the minimum of the values

vp

((
pn

ps

)
mps

)
= psvp(m)− s+ n

is just vp(m) + n, which is attained at a unique s, hence the result.

Corollary 4.2.2. If m ≥ n, then Φm(u−jγ)/p is congruent to a unit of Zp
modulo γp

n−1 − 1.

Proof. By definition,

Φm(u−jγ) =
(u−jγ)p

m − 1
(u−jγ)pm−1 − 1

,

so as elements of OE [Gn], we have

1
p

Φm(u−jγ) =
u−jp

m − 1
p(u−jpm−1 − 1)

.

But u ∈ 1 + pZp by definition, so we are done by Lemma 4.2.1.
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Remark 4.2.3. We have log±p,k ≡ p
1−kλ±

k−2∏
j=0

ω±n (u−jγ) mod (γp
n−1
−1) where

λ± is a unit of Zp and ω±n is defined by

ω+
n (1 +X) =

∏
1≤m<n/2

Φ2m(1 +X)/p,

ω−n (1 +X) =
∏

1≤m<(n+1)/2

Φ2m−1(1 +X)/p.

4.3 The images of Col±n

Let R±n,j be the vector spaces defined by (3.1). We have:

Lemma 4.3.1. The dimensions of the E-vector spaces R±n,j are given by

dimE R
+
n,j = 1 +

∑
1≤m≤n/2

p2m−2(p− 1)2

dimE R
−
n,j = p− 1 +

∑
1≤m≤(n−1)/2

p2m−1(p− 1)2

Proof. By Lemmas A.1.1 and A.1.2 and (3.2), we have

dimE R
+
n,j = dimQp Qp +

∑
1≤m≤n/2

dimQp Q(2m)
p

dimE R
−
n,j = dimQp Qp +

∑
1≤m≤(n−1)/2

dimQp Q(2m+1)
p

where Q(m)
p denotes the Qp-vector space generated by {ζσpm : σ ∈ Gm}. For

m > 1,

dimQp Q(m)
p = dimQp Qp,m − dimQp Qp,m−1

= pm−1(p− 1)− pm−2(p− 1)

= pm−2(p− 1)2

and dimQp Q(1)
p = p− 2, so we are done.

The dimensions of these vector spaces enables us to obtain the following:

Proposition 4.3.2. Let f =
∑
σ∈∆

pn−1−1∑
r=0

ar,σ ·σ ·ur ∈ E[Gn]. If ω±n is as defined

in Remark 4.2.3, then:

(a) There exists z ∈ H1(Qp,n, Vf̄ (k − 1)) such that Col−n (z) ≡ f mod ω+
n (γ).
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(b) If moreover
∑
r

ar,σ1 =
∑
r

ar,σ2 for all σ1, σ2 ∈ ∆, then there exists

z ∈ H1(Qp,n, Vf̄ (k − 1)) such that Col+n (z) ≡ f mod ω−n (γ).

Proof. We only prove (b), as (a) can be proved in the same way. Define

Un =

{
g =

∑
cr,σ · σ · γr ∈ E[Gn] : log+

p,k |g,
∑
r

cr,σ1 =
∑
r

cr,σ1∀σ1, σ2 ∈ ∆

}
.

Then Un is a vector subspace of E[Gn] over E. By remark 4.2.3,

log+
p,k ≡ p

1−kλ+

k−2∏
j=0

ω+
n (u−jγ) mod (γp

n−1
− 1)

for some λ+ ∈ O×E . Since ω+
n (u−j(1 + X)) and (1 + X)p

n−1 − 1 are coprime

for j > 0, log+
p,k |g iff ω+

n (γ)|g. But Φm1 and Φm2 are coprime if m1 6= m2, so

ω+
n (γ)|g iff Φm(γ)|g for all even m < n.

Let g =
∑
cr,σ · σ · ur. For each even m < n, let

b(m)
r,σ = cr,σ + cr+pm,σ + · · ·+ cr−pm,σ.

Then, by Lemma 4.1.1, Φm(γ)|g iff b
(m)
r,σ = b

(m)
s,σ for all σ ∈ ∆ and r ≡ s

mod pm−1. For each such m and σ ∈ ∆, there are pm−1 values of modulo

pm−1, each is equated to p − 1 different values. Since |∆| = p − 1, there are

pm−1(p − 1)2 linearly independent equations for each m. Together with the

equations of
∑
r cr,σ, there are in total

p− 2 +
∑

1≤m≤n/2

p2m−1(p− 1)2

equations describing the coefficients of elements of the Un, which gives the

codimension of Un over E in E[Gn].

By Corollary 4.1.2 and Lemma 4.1.3, for z ∈ H1(Qp,n, Vf̄ (k − 1)), Lη+,n(z)

lies inside the above subspace. But the dimension of the image is given by

dimE R
+
n,1 which is the same as the dimension of Un by Lemma 4.3.1, so

Lη+,n

(
H1(Qp,n, Vf̄ (k − 1))

)
= Un

as E-vector spaces and there exists some z such that Lη+,n(z) = g. This implies

log+
p,k Col+n (z) ≡ f log+

p,k mod (γp
n−1
− 1).
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The factors of ω+
n (u−jγ) on both sides can be cancelled out for j > 0 as

ω+
n (u−jγ) is coprime to ω+

n (γ). Since

pn−1(γ − 1)ω+
n (γ)ω−n (γ) = γp

n−1
− 1,

we deduce that

Col+n (z) ≡ f mod ((γ − 1)ω−n (γ)),

which implies (b).

4.4 The images of Col±

In the previous section, we studied the images of H1(Qp,n, Vf̄ (k − 1)) under

Col±n . To understand the images of Col±, we have to understand those of

H1(Qp,n, Tf̄ (k − 1)) as well.

Lemma 4.4.1. For all n, there exist r±n ∈ Z such that

Lη±,n(H1(Qp,n, Tf̄ (k − 1))) = Lη±,n(H1(Qp,n, Vf̄ (k − 1))) ∩$r±nOE [Gn].

Proof. Note that expn,1(γn,1(η±1 )) 6= 0. As an element of H1(Qp,n, Tf (1)), it

lifts to a cocycle on GQp,n . By considering the image of this cocycle in Vf (1),

which is invariant under the action of Gn, there exists r±n such that

$−r
±
n expn,1(γn,1(η±)τ ) ∈ H1(Qp,n, Tf (1)) \$H1(Qp,n, Tf (1))

for all τ ∈ Gn.

Recall from (4.1) that Lη±,n is given by:

HomE

(
H1(Qp,n, Vf (1)), E

)
→ E[Gn]

θ 7→
∑
τ∈Gn

θ(expn,1(γn,1(η±1 )τ )τ,

where we have identified HomE

(
H1(Qp,n, Vf (1)), E

)
with H1(Qp,n, Vf̄ (k− 1)).

Under this identification, H1(Qp,n, Tf̄ (k − 1)) corresponds to the set of maps

which send H1(Qp,n, Tf (1)) (which is identified as a subset of H1(Qp,n, Vf (1))

as discussed in Chapter 3) to OE . Therefore, we have{
θ(expn,1(γn,1(η±1 )τ ) : θ ∈ H1(Qp,n, Tf̄ (k − 1))

}
= $r±nOE

for all τ ∈ Gn. This implies that the LHS of the equation in the statement of

the lemma is contained in the RHS.
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Conversely, if x ∈RHS, then there exists θ ∈ H1(Qp,n, Vf̄ (k − 1)) such that∑
τ∈Gn θ(expn,1(γn,1(η±1 )τ )τ = x by Proposition 4.3.2. In particular,

θ
(
$−r

±
n expn,1(γn,1(η±1 )τ

)
∈ OE

for all τ ∈ Gn. Hence, there exists θ̃ ∈ H1(Qp,n, Tf̄ (k − 1)) such that θ and θ̃

agree on $−r
±
n expn,1(γn,1(η±1 )τ ) which shows that x ∈LHS.

Lemma 4.4.2. Let r±n be the integers defined in Lemma 4.4.1, then there exist

c± such that r±n = −e(k − 1)bn/2c + c± for n sufficiently large where e is the

ramification degree of E.

Proof. By Remark 2.3.6,

ΩVf (1),1((1 + π)⊗ η±1 ) = O(log(k−1)/2
p ),

which implies that the nth component of ΩVf (1),1((1 + π) ⊗ η±1 ), which is

expn,1
(
γn,1(η±1 )

)
satisfies

expn,1
(
γn,1(η±1 )

)
∈ $−e(k−1)bn/2c+c±H1(Qp,n, Tf (1))

for some constant c± independent of n.

Recall that H1
Iw(Tf (1)) is free of rank 2 over ΛOE . Fix a basis z1, z2, say.

Note that (1 + π)⊗ η±1 form a ΛE-basis for D∞(Vf ). The determinant of

ΩVf (1),1 : H∞(G∞) ⊗
ΛE

D∞(Vf (1))→ H∞(G∞) ⊗
ΛOE

H1
Iw(Tf (1))

with respect to these bases, as a H∞(G∞)-homomorphism, is given by

k−2∏
j=0

logp(u
jγ) ∼ logk−1

p

up to a unit of ΛE (this is the δ(V )-conjecture of [PR94], which can be deduced

from the explicit reciprocity law of Colmez [Col98]). But Theorem 2.4.1 says

that log±p,k ∼ log(k−1)/2
p . Hence, we in fact have

ΩVf (1),1((1 + π)⊗ η±) ∼ log(k−1)/2
p .

Therefore, we can choose c± such that

expn,1
(
γn,1(η±1 )

)
/∈ $−e(k−1)bn/2c+c±+1H1(Qp,n, Tf (1)),

so r±n = −e(k − 1)bn/2c+ c±, for n sufficiently large.
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On combining these two lemmas, we have:

Corollary 4.4.3. If θ is the trivial character on ∆, then there exist s± such

that

Col±
(
H1

Iw(Tf̄ (k − 1))
)θ

= $s±ΓOE .

Proof. By Proposition 4.3.2 and Lemma 4.4.1, for sufficiently large n,

$r±n

(∑
σ∈∆

σ

)
·
k−2∏
j=0

ω̃±n (u−jγ) ∈ Lη±,n
(
H1(Qp,n, Tf̄ (k − 1))

)
where

ω̃+
n (1 +X) =

∏
1≤m<n/2

Φ2m(1 +X),

ω̃−n (1 +X) =
∏

1≤m<(n+1)/2

Φ2m−1(1 +X).

Hence, by Remark 4.2.3 and Lemma 4.4.2, there exist constants s± (independent

of n) such that

$s±

(∑
σ∈∆

σ

)
· log±p,k ∈ Lη±,n

(
H1(Qp,n, Tf̄ (k − 1))

)
and

Lη±,n
(
H1(Qp,n, Tf̄ (k − 1))

)
⊂ $s± log±p,kOE [Gn].

But log±p,k Col± = Lη± , so we have

$s±
∑
σ∈∆

σ ∈ Col±
(
H1(Qp,n, Tf̄ (k − 1)

)
mod ω̃∓n (γ).

Therefore, we are done since

lim
←

ΛOE/ω̃
±
n (γ) = ΛOE and ΛθOE =

(∑
σ∈∆

σ

)
ΛOE .

Remark 4.4.4. It is clear that we can replace θ by an arbitrary character on

∆ for the minus map in the corollary.



Chapter 5

±-Selmer groups

Throughout this chapter, with the exception of Sections 5.3.2 and 5.4, assump-

tions (1) and (2) are not necessary.

Let f be a modular form as in Section 1.3.5, K a number field, the p-Selmer

groups of f over K are defined by the following:

Sel0p(f/K) = ker

(
H1(K,Vf/Tf (1))→

∏
v

H1(Kv, Vf/Tf (1))

)

Selp(f/K) = ker

(
H1(K,Vf/Tf (1))→

∏
v

H1(Kv, Vf/Tf (1))
H1
f (Kv, Vf/Tf (1))

)
where v runs through the places of K.

We write kn for Q adjoining all the pnth roots of unity and Q∞ = ∪kn. Since

there is a unique place above p in kn, we write this place as p as well. Note that

the completion of kn at p is isomorphic to Qp,n. For f satisfying assumptions (1)

and (2), let H1
f (Qp,n, Vf/Tf (1))± be as defined in Section 3.4.2. For all n ≥ 0,

we define the plus and minus Selmer groups by

Sel±p (f/kn) = ker

(
Selp(f/kn)→ H1(Qp,n, Vf/Tf (1))

H1
f (Qp,n, Vf/Tf (1))±

)
.

In this chapter, we show that Selp(f/Q∞) is not ΛOE -cotorsion when f is

supersingular at p. When f satisfies assumptions (1) and (2), we show that

Sel±p (f/Q∞), the direct limit of Sel±p (f/kn), is ΛOE -cotorsion.

5.1 Restricted ramification

We now describe the Selmer groups defined above using restricted ramification.

Let S be a finite set of places of a number field K containing all infinite places,

42
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all primes above p and those dividing N . Then, by [Rub00, Lemma I.5.3],

H1(GS,K , Vf/Tf (1)) = ker

(
H1(K,Vf/Tf (1))→

∏
v/∈S

H1(Kv, Vf/Tf (1))
H1
f (Kv, Vf/Tf (1))

)
(5.1)

where GS,K is the Galois group of the maximal extension of K unramified

outside S. Therefore, we can rewrite Selp as

Selp(f/K) = ker

(
H1(GS,K , Vf/Tf (1))→

⊕
v∈S

H1(Kv, Vf/Tf (1))
H1
f (Kv, Vf/Tf (1))

)
. (5.2)

If f satisfies assumptions (1) and (2), we write

H1
f (kn,v, Vf/Tf (1))± = H1

f (kn,v, Vf/Tf (1))

for v - p. Then,

Sel±p (f/kn) = ker

(
H1(GS,kn , Vf/Tf (1))→

⊕
v∈S

H1(kn,v, Vf/Tf (1))
H1
f (kn,v, Vf/Tf (1))±

)
. (5.3)

The next lemma enables us to give a similar alternative description of Sel0p

as well.

Lemma 5.1.1. With notation above, we have H1
f (Kv, Vf/Tf (1)) = 0 for v - pN .

Proof. If v is an infinite place, we in fact have H1(Kv, Vf/Tf (1)) = 0 as p is

odd (see e.g. [Rub00, Section I.3.7]).

We now assume that v is a finite place not dividing pN . Since v - p,

H1
f (Kv, Vf (1)) = H1

ur(Kv, Vf (1))

by definition and H1
f (Kv, Vf/Tf (1)) is defined to be the image of H1

ur(Kv, Vf (1))

in H1(Kv, Vf/Tf (1)) under the natural map

H1(Kv, Vf (1))→ H1(Kv, Vf/Tf (1)).

By [Rub00, Section I.3.2],

H1
ur(Kv, Vf (1)) ∼= Vf (1)I/(Fr− 1)Vf (1)I

where I is the inertia group of Kv and Fr is the Frobenius of Kur
v /Kv. Hence,

it suffices to show that 1 is not an eigenvalue of Fr. But v is a good prime (i.e.

v - N), so the eigenvalues have absolute value q(k−1)/2
v where qv is the rational

prime lying below v. Hence we are done.
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If S is as above, Lemma 5.1.1 and (5.1) implies that

H1(GS,K , Vf/Tf (1)) = ker

(
H1(K,Vf/Tf (1))→

∏
v/∈S

H1(Kv, Vf/Tf (1))

)
.

Therefore, by the definition of Sel0p, we have:

Sel0p(f/K) = ker

(
H1(GS,K , Vf/Tf (1))→

⊕
v∈S

H1(Kv, Vf/Tf (1))

)
. (5.4)

As stated in the proof of Lemma 5.1.1, H1(Kv, Vf/Tf (1)) = 0 if v is an infinite

place. We can therefore simplify (5.4) further:

Sel0p(f/K) = ker

H1(GS,K , Vf/Tf (1))→
⊕
v∈Sf

H1(Kv, Vf/Tf (1))

 . (5.5)

where Sf denotes the set of finite places in S.

5.2 Poitou-Tate exact sequences

Here, we briefly review results on Poitou-Tate exact sequences. Details can be

found in [PR95, Section A.3].

With the above notation, let S be a finite set of places of K containing those

above p and the infinite places, then we have an exact sequence⊕
v∈Sf

H0(Kv, Vf/Tf (1))→ H2(GS,K , Tf̄ (k − 1))∨ → H1(GS,K , Vf/Tf (1))

→
⊕
v∈Sf

H1(Kv, Vf/Tf (1))

(5.6)

where Sf is again the set of finite places in S. On combining (5.6) and (5.5),

we have⊕
v∈Sf

H0(Kv, Vf/Tf (1))→ H2(GS,K , Tf̄ (k − 1))∨ → Sel0p(f/K).

By taking duals and the fact that

H0(Kv, Vf/Tf (1))∨ = H2(Kv, Tf̄ (k − 1)),

we obtain

Sel0p(f/K)∨ = ker

H2(GS,K , Tf̄ (k − 1))→
⊕
v∈Sf

H2(Kv, Tf̄ (k − 1))

 (5.7)
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For each v ∈ Sf , let

Av ⊂ H1(Kv, Tf̄ (k − 1)) and Bv ⊂ H1(Kv, Vf/Tf (1))

be OE-modules so that they are orthogonal complements to each other under

the Pontryagin duality. Define

H1
B(K,Vf/Tf (1)) = ker

H1(GS,K , Vf/Tf (1))→
⊕
v∈Sf

H1(Kv, Vf/Tf (1))
Bv

 .

Then [PR95, Proposition A.3.2] says that we have an exact sequence

H1(GS,K , Tf̄ (k − 1))→
⊕
v∈Sf

H1(Kv, Tf̄ (k − 1))
Av

→ H1
B(K,Vf/Tf (1))∨

→ H2(GS,K , Tf̄ (k − 1))→
⊕
v∈Sf

H2(Kv, Tf̄ (k − 1)).
(5.8)

Hence, we can combine (5.7) and (5.8) to obtain:

H1(GS,K , Tf̄ (k − 1))→
⊕
v∈Sf

H1(Kv, Tf̄ (k − 1))
Av

→ H1
B(K,Vf/Tf (1))∨

→ Sel0p(f/K)∨ → 0.

(5.9)

5.3 Cotorsionness

5.3.1 Selp(f/Q∞) is not ΛOE
-cotorsion

We now prove our claim about Selp(f/Q∞)∨ in the introduction. Let K = kn.

Take

Bv = H1
f (kn,v, Vf/Tf (1))

for v ∈ Sf in (5.9), then

Av = H1
f (kn,v, Tf̄ (k − 1))

by [BK90, Proposition 3.8]. Hence, on combining (5.2) and (5.9), we have

H1(GS,kn , Tf̄ (k − 1))→
H1(Qp,n, Tf̄ (k − 1))
H1
f (Qp,n, Tf̄ (k − 1))

⊕
⊕
v|N

H1(kn,v, Tf̄ (k − 1))
H1
f (kn,v, Tf̄ (k − 1))

→ Selp(f/kn)∨ → Sel0p(f/kn)∨ → 0.
(5.10)

We are interested in taking inverse limit over n. For the terms coming from

places dividing N , we can apply the following.
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Lemma 5.3.1. For each integer n ≥ 0, fix a prime v(n) of Qp,n not dividing p

such that v(n+ 1) lies above v(n), then

lim
←
n,cor

H1(kn,v(n), Tf̄ (k − 1))
H1
f (kn,v(n), Tf̄ (k − 1))

= 0.

Proof. The Pontryagin dual of the said inverse limit is lim
→
H1
f (kn,v(n), Vf/Tf (1)),

so the result follows immediately from Lemma 5.1.1 if v(n) - N . The general case

is proved in [Kat04, Section 17.10] by considering p-cohomological dimensions.

Therefore, on taking inverse limits in (5.10), we have

H1
S(Tf̄ (k − 1))→

H1
Iw(Tf̄ (k − 1))

Hf (Tf̄ (k − 1))
→ Selp(f/Q∞)∨ → Sel0p(f/Q∞)∨ → 0

(5.11)

where Hf (·) = lim
←−
n

H1
f (Qp,n, ·) and H1

S(·) = lim
←−
n

H1(Gkn,S , ·) ∼= H1(·) (see [Kob03,

Proposition 7.1]).

Proposition 5.3.2. Selp(f/Q∞)∨ is not torsion over ΛOE .

Proof. We actually know more or less everything about the terms appearing in

the exact sequence (5.11) now.

By Theorem 2.3.2, H1
S(Tf̄ (k − 1)) is a torsion-free ΛOE -module of rank 1.

By [PR00, Theorem 0.6], Hf (Tf̄ (k − 1)) = 0. By [PR94, Proposition 3.2.1],

H1
Iw(Tf̄ (k − 1)) is of rank 2 over ΛOE . By [Kob03, proof of Proposition 7.1],

which is a purely algebraic proof and generalises to modular forms directly,

Sel0p(f/Q∞)∨ is ΛOE -torsion. Therefore, Selp(f/Q∞)∨ has ΛOE -rank at least 1

and we are done.

5.3.2 Sel±p (f/Q∞) is ΛOE
-cotorsion

We again set K = kn. Let

Bv =
{
H1
f (kn,v, Vf/Tf (1)) if v|N

H1(Qp,n, Vf/Tf (1))± if v = p.

By [BK90, Proposition 3.8] and Lemma 3.4.3, we have

Av =
{
H1
f (kn,v, Tf̄ (k − 1)) if v|N

H1
±(Qp,n, Tf̄ (k − 1)) if v = p.
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Hence, on combining (5.3) with (5.9), we obtain the following exact sequence:

H1(GS,kn , Tf̄ (k − 1))→
H1(Qp,n, Tf̄ (k − 1))
H1
±(Qp,n, Tf̄ (k − 1))

⊕
⊕
v|N

H1(kn,v, Tf̄ (k − 1))
H1
f (kn,v, Tf̄ (k − 1))

→ Sel±p (f/kn)∨ → Sel0p(f/kn)∨ → 0.
(5.12)

Therefore, on taking inverse limits in (5.12) and applying Lemma 5.3.1, we

have

H1
S(Tf̄ (k − 1))→

H1
Iw(Tf̄ (k − 1))

H1
Iw,±(Tf̄ (k − 1))

→ Sel±p (f/Q∞)∨ → Sel0p(f/Q∞)∨ → 0

(5.13)

where H1
Iw,±(Tf̄ (k − 1)) is as defined in Chapter 3, i.e.

lim
←
H1
±(Qp,n, Tf̄ (k − 1)).

Proposition 5.3.3. Sel±p (f/Q∞) is ΛOE -cotorsion.

Proof. Recall that ker(Col±) = H1
Iw,±(Tf̄ (k−1)) and Col±(zKato) = L±p . There-

fore, if L±p 6= 0, it would imply that the cokernel of the first map in (5.13) is

ΛOE -torsion and the result would follow from the fact that Sel0p(f/Q∞)∨ is

ΛOE -torsion. Hence, we are done by the following lemma.

Lemma 5.3.4. L±p 6= 0.

Proof. The case when f corresponds to an elliptic curve is proved in [Pol03,

Corollary 5.11]. The general case can be proved similarly.

By [Pol03], if θ is a character on Gn which does not factor through Gn−1

and 0 ≤ r ≤ k − 2, then

χrθ(L+
p ) = C+

n,r(θ)L(f, θ, r + 1) if n is even,

χrθ(L−p ) = C−n,r(θ)L(f, θ, r + 1) if n is odd

where C±n,r(θ) are nonzero constants. By [Roh88], L(f, θ, 1) = 0 for finitely

many θ if k = 2. If k ≥ 3, L(f, θ, r + 1) 6= 0 for r + 1 ≤ (k − 1)/2 by [Shi76,

Proposition 2]. Hence we are done.

Corollary 5.3.5. The first map in (5.13) is injective.

Proof. It follows from Theorem 2.3.2 and Lemma 5.3.4.
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Remark 5.3.6. It is clear from the proof of Lemma 5.3.4 that L±,θp 6= 0 for

any character θ on ∆. Therefore, Sel±p (f/Q∞)θ is ΓOE -cotorsion and we can

associate to it a characteristic ideal, namely

CharΓOE

(
Sel±p (f/Q∞)∨,θ

)
.

5.4 Main conjectures

We now formulate a main conjecture and relate it to that of Kato.

By Corollary 5.3.5 and the fact that Sel0p(f/Q∞)∨ ∼= H2(Tf̄ (k − 1)) (see

[Kur02]), we have an exact sequence

0→ H1
S(Tf̄ (k−1))→ Im(Col±)→ Sel±p (f/Q∞)∨ → H2(Tf̄ (k−1))→ 0. (5.14)

If θ is a character on ∆, then

CharΓOE
(H1

S(Tf̄ (k − 1))θ/Z(Tf̄ (k − 1))θ) = CharΓOE
(H2(Tf̄ (k − 1))θ)

if and only if

CharΓOE
(Sel±p (f/Q∞)∨,θ) = CharΓOE

(Im(Col±,θ)/L±,θp ).

In other words, Kato’s main conjecture (for f̄) is equivalent to the following

conjecture.

Conjecture 5.4.1. CharΓOE
(Sel±p (f/Q∞)∨,θ) = CharΓOE

(Im(Col±,θ)/L±,θp ).

Moreover, by Corollary 4.4.3 and Remark 4.4.4, we have:

Corollary 5.4.2. Let δ = ±. When θ = 1 or δ = −, Conjecture 5.4.1 is

equivalent to

CharΓOE
(Sel±p (f/Q∞)∨,θ) = ($−s

±
L±,θp ).

Remark 5.4.3. It is clear that the RHS in Conjectures 5.4.1 and 5.4.2 are

contained in the LHS if we replace ΓOE by ΓE by Theorem 2.3.3.



Chapter 6

CM forms

We now follow the strategy of [PR04] to prove that equality holds in Corol-

lary 5.4.2 (with θ = 1) for CM forms.

6.1 Generality of CM forms

We first briefly review the theory of CM modular forms. Details can be found

in [Kat04, Section 15].

Let K be an imaginary quadratic field with idele class group CK . A Hecke

character of K is simply a continuous homomorphism φ : CK → C× with

complex L-function

L(φ, s) =
∏
v

(1− φ(v)N(v)−s)−1

where the product runs through the finite places v of K at which φ is unramified,

φ(v) is the image of the uniformiser of Kv under φ and N(v) is the norm of v.

Let f be a modular form as defined in Section 1.3.5 with complex multiplica-

tion, i.e. L(f, s) = L(φ, s) for some Hecke character φ of an imaginary quadratic

field K. Then, for a good prime p,

1− app−s + ε(p)pk−1−2s =

{
1− φ(p)p−2s if p is inert in K

(1− φ(P)p−s)(1− φ(P̄)p−s) if (p) = PP̄ in K.

Therefore, ap = 0 if p is inert in K. If p splits into PP̄, ap = φ(P) +φ(P̄). It is

known that φ(P) + φ(P̄) is a p-adic unit, hence f is ordinary at p. Therefore,

for a good prime p - N , ap = 0 iff f is supersingular at p. We fix such a p which

is odd.

49
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Let O be the ring of integers of K. We denote the conductor of φ by f.

For an ideal a of K, K(a) denotes the ray class field of K of conductor a. We

write K for the union ∪nK(pnf). Then, the action of GQ on Vf factors through

Gal(K/Q). The same is then true for Vf (j) for all j as Q∞ ⊂ K.

More specifically, Vf ∼= V (φ) ⊕ τV (φ) where V (φ) is the one-dimensional

E-representation of GK associated to φ and τ is the complex conjugation. The

action of GQ is given by

σ(x, y) =

{
(σ(x), τ(τστ)(y)) if σ ∈ GK ,
((τστ)(y), τσ(x)) otherwise.

In addition to assumptions (1) and (2), we assume:

• Assumption (3): f is defined over Q, ε = 1 and K has class number 1.

Then, as a Qp-vector space, Vf is isomorphic to Kp (where Kp denotes the

completion of K at p) and we can take Tf to be the lattice corresponding to

Op. We write ρ for the character given by

ρ : GK → Aut(Vf/Tf (1)) ∼= O×p .

For simplicity, we write A for Vf/Tf (1) from now on.

Recall that Kc denote the Zp-cyclotomic extension of K. We write Km

for the unique Z2
p-extension of K and L denotes Op[[Gal(Km/K)]]. Given a

Zp[[Gal(K/K)]]-module Y , we write YF for

Y⊗Zp[[Gal(K/K)]]Zp[[Gal(F/K)]]

and Y ρF = YF (ρ−1) where F = Kc or Km.

Let F be an extension of Q. Following [Rub85], we define a modified Selmer

group:

Sel′p(f/F ) = ker

H1(F,A)→
∏
v-p

H1(Fv, A)
H1
f (Fv, A)

 .

For a finite abelian extension F of K, we define groups CF , EF and UF as

in [PR04]: UF is the pro-p part of the local unit group (OF ⊗ Zp)×, EF is the

closure of the projection of the global units O×F into UF and CF is the closure of

the projection of the subgroup of elliptic units (as defined in [Rub91, Section 1],

see also Section 6.1.1 below) into UF . We then define

C = lim
←
CF , E = lim

←
EF and U = lim

←
UF
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where the inverse limits are taken over finite extensions F of K inside K and

the connecting map is the norm map.

Finally, let M be the maximal abelian p-extension of K which is unramified

outside p and write X for the Galois group of M over K.

6.1.1 Elliptic units

We now briefly review the definition of elliptic units associated to K. Let a

and b be non-zero ideals of OK such that a is prime to 6b and the natural

map O×K → (OK/b)× is injective. There exists an elliptic function on C/b

with zeros and poles given by 0 (with multiplicity N(a)) and the a-division

points respectively. There exists a unique such function if we impose some

norm compatibility condition on its values as a varies. We write aθb for this

unique function and let azb =a θb(1)−1. Then, azb ∈ K(b)× for any a and b

as above. For a fixed b, the group of elliptic units in K(b) is defined to be the

group generated by az
σ
b where σ ∈ Gal(K(b)/K) and the roots of unity in K(b).

6.2 Properties of Sel′p

In this section, we generalise [PR04, Theorem 2.1]. We do this by generalising

three results of [Rub85].

Lemma 6.2.1. There is an isomorphism Sel′p(f/Kc) ∼= Selp(f/Kc).

Proof. By definitions, we have the following exact sequence:

0→ Selp(f/Kc)→ Sel′p(f/Kc)→
H1(Kc,p, A)
H1
f (Kc,p, A)

.

Therefore, it suffices to show that H1(Kc,p, A) = H1
f (Kc,p, A). By [BK90,

Proposition 3.8],(
H1(Kc,p, A)
H1
f (Kc,p, A)

)∨
= lim
←
H1
f (K(n)

p , Tf̄ (k − 1)).

Hence, it suffices to show that the said inverse limit is 0.

Note that Gal
(
Kp,n/K

(n−1)
p

)
∼= ∆, we have the inflation-restriction exact

sequence

0→ H1(∆, Tf̄ (k − 1)GKp,n )→ H1(K(n−1)
p , Tf̄ (k − 1))→ H1(Kp,n, Tf̄ (k − 1))∆

→ H2(∆, Tf̄ (k − 1)GKp,n ).
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As Kp/Qp is unramified, the proof of Lemma 3.1.1 implies

Tf̄ (k − 1)GKp,n = 0

for all n. Therefore,

H1(K(n−1)
p , Tf̄ (k − 1)) ∼= H1(Kp,n, Tf̄ (k − 1))∆.

By [PR00, Theorem 0.6], we have

lim
←
H1
f (Kn,p, Tf̄ (k − 1)) = 0,

hence we are done.

This corresponds to [Rub85, Theorem 2.1], which holds for any infinite ex-

tensions of K contained in K. Since we have used a result on the inverse limit of

H1
f over Kp,n, the proof above would unfortunately not work in such generality.

We now generalise [Rub85, Proposition 1.1].

Lemma 6.2.2. There is an isomorphism Sel′p(f/K) ∼= Hom(X , A).

Proof. Since the action of GK on A factors through Gal(K/K), we have

H1(K, A) ∼= Hom(GK, A).

We can therefore identify Sel′p(f/K) with a subgroup of Hom(GK, A). Also, the

triviality of the action implies that A is unramified at all places of K. There-

fore, H1
f (Kv, A) = H1

ur(Kv, A) for all v - p by [Rub00, Lemma 3.5(iv)]. Hence,

Sel′p(f/K) corresponds to the subgroup Hom(X , A) ⊂ Hom(GK, A).

Before we continue, we state a result of Rubin:

Lemma 6.2.3. For i = 1, 2, Hi(K/Kc, A) = 0.

Proof. See [Rub85, proof of Proposition 1.2].

Now, we can generalise [Rub85, Proposition 1.2].

Lemma 6.2.4. There is an isomorphism Sel′p(f/Kc) ∼= Sel′p(f/K)Gal(K/Kc).
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Proof. We have the inflation-restriction exact sequence

0→ H1(K/Kc, A)→ H1(Kc, A) r→ H1(K, A)Gal(K/Kc) → H2(K/Kc, A)

where r is the restriction map. Consider the following commutative diagram:

H1(Kc, A) r //

��

H1(K, A)

��
H1(Kc,v, A)/H1

f (Kc,v, A) // H1(Kv′ , A)/H1
f (Kv′ , A)

where v - p is a place of Kc and v′ is a place of K above v. It clearly implies

that

r
(
Sel′p(f/Kc)

)
⊂ Sel′p(f/K).

Write v′ for the place of Kc(f) below v′, then v′ is unramified in K/Kc(f).

Therefore, the map

rv′ : H1(IKc(f)v′ , A)→ H1(IKv′ , A)

where I denotes the inertia group is injective. This implies that

H1(Kc(f)v′ , A)/H1
f (Kc(f)v′ , A)→ H1(Kv′ , A)/H1

f (Kv′ , A)

is injective because the H1
f coincide with H1

ur. But Gal(Kc(f)/Kc) has trivial

Sylow p-subgroup, hence the bottom row of the commutative diagram above is

injective. Therefore, we have

r−1(Sel′p(f/K)) ⊂ Sel′p(f/Kc).

Hence, we have an exact sequence:

0→ H1(K/Kc, A)→ Sel′p(f/Kc)
r→ Sel′p(f/K)Gal(K/Kc) → H2(K/Kc, A).

Hence, we are done by Lemma 6.2.3.

We can now give a generalisation of [PR04, Theorem 2.1]:

Corollary 6.2.5. Selp(f/Kc) ∼= HomO(X ρKc ,Kp/Op).

Proof. Combining the Lemmas 6.2.1, 6.2.2 and 6.2.4, we have

Selp(f/Kc) ∼= Sel′p(f/Kc)

∼= Sel′p(f/K)Gal(K/Kc)

∼= Hom(X , A)Gal(K/Kc)

But A|GK ∼= Kp/Op(ρ), hence the result.
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6.3 Reciprocity law

In this section, we generalise the reciprocity law given by [PR04, Theorem 5.1].

We first review a result of Rubin.

Theorem 6.3.1 (Rubin). The L-module CρKm is free of rank 1.

Proof. By [Rub91, Theorem 7.7], CKm ∼= I(Km)Iµ where I(Km) is the augmen-

tation ideal of L and Iµ is the annihilator of the roots of unity of Km in L. But

since ρ 6= 1 and ρ 6= χ, we have

I(Km)(ρ−1) = Iµ(ρ−1) = L(ρ−1),

hence the result.

We now generalise [PR04, Proposition 4.1]:

Lemma 6.3.2. H1
f (Kc,p, A) ∼= HomO(UρKc ,Kp/Op).

Proof. As in the proof of Lemma 6.2.2, we have

H1(Kp, A) ∼= Hom(GKp , A).

But we also have an isomorphism

H1(Kc,p, A) ∼= H1(Kp, A)Gal(Kp/Kc,p)

by the inflation-restriction sequence and Lemma 6.2.3.

Hence, by local class field theory, we have

H1(Kc,p, A) ∼= Hom(GKp , A)Gal(Kp/Kc,p)

∼= HomOp(U , A)

(see [Rub87, Proposition 5.2]). By the proof of Lemma 6.2.1, we have

H1
f (Kc,p, A) ∼= H1(Kc,p, A),

hence we are done.

In particular, we have a pairing <,>: H1
f (Kc,p, A) × UρKc → Kp/Op. We

now prove the explicit reciprocity law.
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Proposition 6.3.3. There exists a generator ξ of CρKm over L such that for

any finite extension F of K contained in Kc, θ a character on G = Gal(F/K),

x ∈ H1
f (Fp, A) and r a non-negative integer, we have

∑
σ∈G

θ(σ) < xσ ⊗ p−r, ξ >= p−r
L(fθ−1 , 1)

Ω±f

[∑
σ∈G

θ(σ) exp−1
Fp,Vf (1)(x

σ), ω̄−1

]
(6.1)

where θ(−1) = ± and exp−1
Fp,Vf (1) is the inverse of the exponential map

expFp,Vf (1) : Fp ⊗ D(Vf (1))/D0(Vf (1)) ∼→ H1
f (Fp, Vf (1)).

Proof. Let zp∞f = (zpnf)n be the system of norm-compatible elliptic units in

lim
←
K(pnf) defined in [Kat04, Section 16.5], then azpnf is a multiple of zpnf for

all a and pnf satisfying the conditions in Section 6.1.1. Therefore, if we write ξ

as its image in CρKm , it must be a generator of CρKm over L by Theorem 6.3.1.

Let x ∈ H1
f (Fp, Tf (1)) and y ∈ H1(Fp, Tf̄ (k − 1)), we have∑

σ∈G
θ(σ)[xσ, y] =

∑
σ∈G

θ(σ)TrF/K
[
exp−1

Fp,Vf (1)(x
σ), exp∗Fp,Vf̄(k−1)

(y)
]

=
∑
σ,τ∈G

θ(σ)
[
exp−1

Fp,Vf (1)(x
στ ), exp∗Fp,Vf̄(k−1)

(yτ )
]

=
∑
σ,τ∈G

θ(στ)θ−1(τ)
[
exp−1

Fp,Vf (1)(x
στ ), exp∗Fp,Vf̄(k−1)

(yτ )
]

=

[∑
σ∈G

θ(σ) exp−1
Fp,Vf (1)(x

σ),
∑
τ∈G

θ−1(τ) exp∗Fp,Vf̄(k−1)
(yτ )

]
.

Consider the Kummer exact sequences:

C //

��

U

��
lim
←
H1(OK′ [1/p],Op(1)) //

⊗ρχk−2

��

lim
←
H1(K ′p,Op(1))

⊗ρχk−2

��
lim
←
H1(OK′ [1/p], Tf̄ (k − 1)) // lim

←
H1(K ′p, Tf̄ (k − 1)).

By [Kat04, Proposition 15.9 and (15.16.1)], the image of zp∞f in

lim
←
H1(OK′ [1/p], Tf̄ (k − 1))

is zKato (up to a twist) and so ξ satisfies∑
τ∈G

θ−1(τ) exp∗Fp,Vf̄(k−1)
(ξτ ) =

L(fθ−1 , 1)ω̄−1

Ω±f
.
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Therefore, we have:

∑
σ∈G

θ(σ) < xσ ⊗ p−r, ξ >= p−r

[∑
σ∈G

θ(σ) exp−1
F,Vf (1)(x

σ),
L(fθ−1 , 1)ω̄−1

Ω±f

]

as required.

6.4 Proof of the main conjecture

On replacing Qp,n by Kp,n, we define H1
f (Kp,n,W )± and hence Sel±p (f/K∞) as

in Chapter 5 where W = A or Tf (1). Let G = Gal(K/Q). As in the proof of

Lemma 6.2.1, the inflation-restriction exact sequence implies that

H1(Qp,n,W ) ∼= H1(Kp,n,W )G

for W = A or Tf (1), so we recover Sel±p (f/Q∞) on taking G-invariant. Similarly,

on replacing Qp,n and Kp,n by Q(n−1)
p and K

(n−1)
p respectively, we define the

±-Selmer groups Sel±p (f/Qc) and Sel±p (f/Kc). Under our assumptions, they

coincide with the ∆-invariants of Sel±p (f/Q∞) and Sel±p (f/K∞) respectively.

Analogously, we have H1
±(F, Tf̄ (k − 1)) for F = Kp,n, K(n−1)

p or Q(n−1)
p . Since

Kp/Qp is unramified, all the results from the previous chapters generalise di-

rectly on replacing Qp by K.

Via the isomorphism defined in Lemma 6.3.2, we define V± ⊂ UρKc to be the

subgroup corresponding to the elements of HomO
(
H1
f (Kc,p, A),Kp/Op

)
which

factor through H1
f (Kc,p, A)±. Then, by [PR04, Theorem 4.3],

Sel±p (f/Kc) ∼= HomO
(
X ρKc/α(V±),Kp/Op

)
where α is the Artin map on U , which enables us to generalise [PR04, Theo-

rem 7.2]:

Theorem 6.4.1. Let s± be the integer from Corollary 4.4.3, then

CharΓOp

(
HomO

(
Sel±p (f/Kc),Kp/Op

))
=
(
p−s

±
L±p

)
.

Proof. By the above isomorphism and [PR04, Theorem 6.3], we have:

CharΓOp

(
HomO

(
Sel±p (f/Kc),Kp/Op

))
= CharΓOp

(
X ρKc/α(V±)

)
= CharΓOp

(
UρKc/(V

± + CρKc)
)
.
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By Corollary 4.4.3, the quotient

H1(Qc,p, Tf̄ (k − 1))/H1
±(Qc,p, Tf̄ (k − 1))

is free of rank one over ΓZp . Hence, by (4.1) and the proofs of Lemma 4.4.1 and

Corollary 4.4.3, the ΓZp -module

Hom
(
H1
f (Qc,p, Tf (1))±,Zp

)
is also free of rank one and it has a generator f± such that∑

σ∈Gn

f±(expn,1(γn,1(η±1 )σ))σ ≡ ps
±

log±p,k mod (γp
n−1
− 1). (6.2)

Note that we have abused notation by writing expn,1(γn,1(η±1 )) for its image in

H1(Q(n−1)
p , Tf (1)) under the corestriction.

As in [PR04, Theorems 7.1 and 7.2], we have

Hom
(
H1
f (Qc,p, A)±,Qp/Zp

) ∼= Hom
(
H1
f (Qc,p, Tf (1))±,Zp

)
,

HomO
(
H1
f (Kc,p, A)±,Kp/Op

) ∼= Hom
(
H1
f (Qc,p, A)±,Qp/Zp

)
⊗Op.

Let µ± (resp. ϑ±) be the image of f± (resp. ξ from Proposition 6.3.3) in

HomO
(
H1
f (Kc,p, A)±,Kp/Op

)
. Then ϑ± = h±µ± for some h± ∈ ΓOp . As in

[PR04, proof of Theorem 7.2], there is an isomorphism

UρKc/(V
± + CρKc) ∼= ΓOp/h

±ΓOp .

Hence we have:

CharΓOp

(
HomO

(
Sel±p (f/Kc),Kp/Op

))
= h±ΓOp .

Let F be a finite extension of K contained in Kc, θ a character of G, the

Galois group of F over K, x ∈ H1
f (Fp, A), r and integer, then ϑ± = h±µ±

implies ∑
σ∈G

θ(σ)ϑ±(xσ ⊗ p−r) = θ(h±)
∑
σ∈G

θ(σ)µ±(xσ ⊗ p−r) (6.3)

We now take x = expn,1(γn,1(η±1 )). By (6.2), the RHS of (6.3) is just

p−r+s
±
θ(h±)θ(log±p,k). Hence, (6.1) implies that the LHS of (6.3) equals to the

following:

p−r
L(fθ−1 , 1)

Ωδf

[∑
σ∈G

θ(σ)γn,1(η±1 )σ, ω̄−1

]
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where δ = θ(−1). We now compute
∑
σ∈G θ(σ)γn,1(η±1 )σ.

Take F to be K(n−1)
p and θ a character of conductor pn. Then

∑
σ∈G

θ(σ)γn,1(η±)σ =
∑
σ∈G

θ(σ)
pn

(
n−1∑
i=0

ζσpn−i ⊗ ϕ
i−n(η±1 ) + (1− ϕ)−1(η±1 ))

)
= p−n

∑
σ∈G

θ(σ)ζσpn ⊗ ϕ−n(η±1 )

= p−nτ(θ)ϕ−n(η±1 )

where τ(θ) denotes the Gauss sum of θ. Since ϕ2 + ε(p)pk−3 = 0 on D(Vf (1)),

we have

ϕ−n(η−1 ) = (−ε(p)pk−3)
−n−1

2 p−1ϕ(ω)1/[ϕ(ω), ω̄] (for n odd),

ϕ−n(η+
1 ) = (−ε(p)pk−3)

−n
2 ϕ(ω)1/[ϕ(ω), ω̄] (for n even).

Hence, (6.3) implies:

ps
−
θ(h−)θ(log−p,k) = (−ε(p)pk−1)

−n−1
2 τ(θ)

L(fθ−1 , 1)
Ωδf

(for n odd),

ps
+
θ(h+)θ(log+

p,k) = (−ε(p)pk−1)
−n
2 τ(θ)

L(fθ−1 , 1)
Ωδf

(for n even).

Therefore, by the interpolating properties of L±p at these characters, we have:

ps
−
θ(h−) = θ(L−p ) (for n odd),

ps
+
θ(h+) = θ(L+

p ) (for n even).

But h± and L±p are both O(1) and the above holds for infinitely many n, so

h± = p−s
±
L±p . Hence we are done.

By taking G-invariants, we have the following.

Corollary 6.4.2. CharΓZp

(
Sel±p (f/Qc)∨

)
=
(
p−s

±
L±p

)
.



Chapter 7

Wach modules and modular
forms

Let f be a modular form as in Section 1.3.5. In this chapter, we explain how

some of our earlier results can be generalised for more general ap. In particular,

we construct Coleman maps for f at an arbitrary good prime - either ordinary

or supersingular. When vp(ap) is large in a precise sense, we give a reformula-

tion of Kato’s main conjecture as in Chapter 5 by carrying out some explicit

calculations.

7.1 Positive crystalline representations

7.1.1 Generality of Wach modules

We first review some results on Wach modules. Proofs can be found in [Ber03,

Ber04, BB10].

Let E be a finite extension of Qp and V a crystalline representation of GQp

which is E-linear, with Hodge-Tate weights in [a, b]. The Wach module of V is

the unique E⊗Qp B+
Qp -module N(V ) in D(V ) such that the following conditions

are satisfied:

1. N(V ) is free of rank d = dimE(V ) over E ⊗Qp B+
Qp ;

2. the action of G∞ preserves N(V ) and is trivial on N(V )/πN(V );

3. ϕ(πbN(V )) ⊂ πbN(V ) and πbN(V )/ϕ∗(πbN(V )) is killed by qb−a, where

ϕ∗M denotes the R-module generated by ϕ(M) if M is a R-module

equipped with an action of ϕ.

59
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When V is positive, we endow N(V ) with the filtration

Fili N(V ) = {x ∈ N(V ) | ϕ(x) ∈ qiN(V )}.

Then, N(V )/πN(V ) is a filtered E-linear ϕ-module, and there is an isomorphism

N(V )/πN(V ) ∼= D(V ). Moreover, we can recover D(V ) from N(V ) as

D(V ) =
(
B+

rig,Qp ⊗B+
Qp

N(V )
)G∞

.

If T is an OE-lattice in V stable under GQp , then N(T ) = N(V ) ∩D(T ) is

an OE ⊗Zp A+
Qp -lattice in N(V ), and the functor T 7→ N(T ) gives a bijection

between the GQp -stable lattices T in V and the OE ⊗Zp A+
Qp -lattices in N(V )

satisfying

1. N(T ) is free of rank d = dimE(V ) over OE ⊗Zp A+
Qp ;

2. the action of G∞ preserves N(T );

3. ϕ(πbN(T )) ⊂ πbN(T ) and πbN(T )/ϕ∗(πbN(T )) is killed by qb−a.

Let m be an integer. For the Tate twist T (m) of T , its Wach module is

related to that of T by

N(T (m)) = π−mN(T )⊗ em.

Theorem 7.1.1 (Berger). Let T be as above, then (ϕ∗N(T ))ψ=0 is a free ΛOE -

module of rank d. Moreover, if n0
1, . . . , n

0
d is a basis of N(T ), then there exists

a basis n1, . . . , nd such that ni ≡ n0
i mod π for all i and

(1 + π)ϕ(n1 ⊗ π−mem), . . . , (1 + π)ϕ(nd ⊗ π−mem)

form a ΛOE -basis of (ϕ∗N(T (m)))ψ=0 for all integers m.

7.1.2 Construction of Coleman maps

Assume that V is a positive d-dimensional E-linear representation of GQp with

Hodge-Tate weights −rd ≤ −rd−1 ≤ · · · ≤ −r1 ≤ 0 and it has no quotient

isomorphic to E(−rd). Fix an OE-lattice T in V stable under GQp and a basis

n1, . . . , nd of N(T ) given by Theorem 7.1.1 and write P for the matrix of ϕ with

respect to this basis. Then, as column vectors,ϕ(n1)
...

ϕ(nd)

 = PT

n1

...
nd

 .
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Moreover, the determinant of P is qr1+···+rd up to a unit.

Let m =
∑d
i=1 ri, then D(T (m))ψ=1 = N(T (m))ψ=1 by [Ber03, Theo-

rem A.3]. So, if x ∈ D(T (m))ψ=1, there exist unique x1, . . . , xd ∈ OE ⊗ A+
Qp

such that

x = π−m
(
x1 · · · xd

)n1

...
nd

⊗ em. (7.1)

Let ν1, . . . , νd be a basis of D(V ) over E and write Aϕ for the matrix of ϕ

with respect to this basis. We have

D(V ) ⊂ (E ⊗ B+
rig,Qp)⊗ N(V )

and there exists a matrix M ∈M(d,E ⊗ B+
rig,Qp) such thatν1

...
νd

 = M

n1

...
nd

 .

The determinant of M is equal to (t/π)m up to a unit in E⊗B+
rig,Qp . Moreover,

the isomorphism N(V )/πN(V ) ∼= D(V ) means that we may assume M |π=0 = I,

the identity matrix. The compatibility of the action of ϕ implies that

ϕ(M)PT = ATϕM. (7.2)

We can now rewrite (7.1):

x =
(
x1 · · · xd

)
·
(
t

π

)m
M−1

ν1,m

...
νd,m

 (7.3)

with (t/π)mM−1 ∈ M(d,E ⊗ B+
rig,Qp) and {νi,m = νi ⊗ t−mem : i = 1, . . . , d}

gives a basis of D(V (m)).

Lemma 7.1.2. For any x as above, the entries of the row vector

Col(x) :=
(
x1 · · · xd

)
qm(PT )−1 −

(
ϕ(x1) · · · ϕ(xd)

)
are elements of

(
OE ⊗ A+

Qp

)ψ=0

.

Proof. Since the determinant of P is qm up to a unit in OE⊗A+
Qp , the entries of

Col(x) are indeed elements ofOE⊗A+
Qp . It remains to show that ψ(Col(x)) = 0.
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But ϕ(π) = πq, (7.1) implies that

x =
(
x1 · · · xd

)
qm(PT )−1ϕ(π−m)

ϕ(n1)
...

ϕ(nd)

⊗ em.
Hence,

ψ(x) = ψ
((
x1 · · · xd

)
qm(PT )−1

)
π−m

n1

...
nd

⊗ em.
Therefore, ψ(x) = x implies that

ψ
((
x1 · · · xd

)
qm(PT )−1

)
=
(
x1 · · · xd

)
.

Hence the result.

Definition 7.1.3. For 1 ≤ i ≤ d, we define

Coli : D(T (m))ψ=1 →
(
OE ⊗ A+

Qp

)ψ=0

by sending x to the ith component of Col(x) as defined in Lemma 7.1.2.

It is clear that Coli depends on the choice of basis. The precise dependence

is given by the following.

Lemma 7.1.4. Let n1, . . . , nd and n′1, . . . , n
′
d be two bases of N(T ) withn1

...
nd

 =M

n
′
1
...
n′d

 .

Then, the respective Coleman maps defined by these two bases, Col and Col′

are related by Col(x)ϕ(M) = Col′(x) for all x ∈ D(T (m))ψ=1.

Proof. For any x ∈ D(T (m))ψ=1, write x = x1n1+· · ·+xdnd = x′1n
′
1+· · ·+x′dn′d.

Then, (
x′1 · · · x′d

)
=
(
x1 · · · xd

)
M

Let P and P ′ be the matrices of ϕ with respect to n1, . . . , nd and n′1, . . . , n
′
d

respectively, then PTM = ϕ(M)P ′T . Therefore,

Col′(x) =
(
x′1 · · · x′d

)
qm(P ′T )−1 −

(
ϕ(x′1) · · · ϕ(x′d)

)
=
(
x1 · · · xd

)
qmM(P ′T )−1 −

(
ϕ(x1) · · · ϕ(xd)

)
ϕ(M)

=
(
x1 · · · xd

)
qm(PT )−1ϕ(M)−

(
ϕ(x1) · · · ϕ(xd)

)
ϕ(M).

Hence the lemma.
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By simple calculations, Col(x) can be related to (1− ϕ)(x):

(1− ϕ)(x) = Col(x)ϕ(π)−mPT

n1

...
nd

⊗ em (7.4)

= Col(x)ϕ


n1

...
nd

π−m ⊗ em

 (7.5)

= Col(x)
(
t

πq

)m
PTM−1

ν1,m

...
νd,m

 . (7.6)

Remark 7.1.5. By (7.5), we can prove Lemma 7.1.2 using the fact that ψ(x) =

x iff ψ ◦ (1− ϕ)(x) = 0.

Note that Coli defined above are not ΛOE -homomorphisms. However, by

(7.5), (1 − ϕ)(x) ∈ (ϕ∗N(T (m)))ψ=0 for any x ∈ D(T (m))ψ=1. Therefore,

Theorem 7.1.1 allows us to define:

Definition 7.1.6. For i = 1, . . . , d, we define Coli : D(T (m))ψ=1 → ΛOE by

the relation

(1− ϕ)(x) =
d∑
i=1

Coli(x) · [(1 + π)ϕ(ni ⊗ π−mem)]

for x ∈ D(T (m))ψ=1

We are interested in both sets of Coleman maps which arise from a modular

form. Although the former is not ΛOE -homomorphism, it has the advantage of

being more explicit than the latter. It is clear that these maps can be extended

to a map on D(V (m))ψ=1 (with images in
(
E ⊗ B+

Qp

)ψ=0

and ΛE respectively).

On abusing notation, we write these maps as Coli and Coli as well.

7.2 p-supersingular modular forms

Let f be as in Section 1.3.5 with vp(ap) > 0. On choosing appropriate bases,

we obtain two pairs of p-adic L-functions (as elements of E ⊗ B+,ψ=0
Qp and ΛE

respectively) associated to f by applying the Coleman maps from Section 7.1

to the restriction of Vf̄ to GQp . We then study some of their basic properties

and consequences.
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7.2.1 Construction of p-adic L-functions

For simplicity, we assume that ε(p) = 1. In particular ap = āp. Recall that we

have de Rham filtration

Di(Vf ) =

 Eν1 ⊕ Eν2 if i ≤ 0
Eν1 if 1 ≤ i ≤ k − 1
0 if i ≥ k

(7.7)

for some basis ν1, ν2 over E. By Theorem 2.3.5, ν1 is not an eigenvalue of ϕ

and we may choose ν2 = p1−kϕ(ν1) so that the matrix Aϕ of ϕ with respect to

this basis is given by (
0 −1

pk−1 ap

)
as ϕ2 − apϕ+ pk−1 = 0. We call such a basis a ‘good basis’ for D(Vf ).

Let ν̄1, ν̄2 be a ‘good basis’ of D(Vf̄ ). Then, the matrix of ϕ with respect to

this basis is again equal to Aϕ also since ap = āp.

Pick a basis n1, n2 of N(Vf̄ ) lifting ν̄1, ν̄2 as given by Theorem 7.1.1. It then

determines lattices Tf̄ and Tf as in Section 2.3.1. Note that Vf̄ is irreducible

with Hodge-Tate weights 0 and −k + 1, so it has no quotient isomorphic to a

Tate twist of E. Therefore, we obtain two sets of Coleman maps associated to

f , namely

Coli : D(Tf̄ (k − 1))ψ=1 →
(
OE ⊗ A+

Qp

)ψ=0

,

Coli : D(Tf̄ (k − 1))ψ=1 → ΛOE ,

for i ∈ {1, 2}. We can then define two pairs of p-adic L-functions:

Definition 7.2.1. For i = 1, 2, define Lp,i = Coli(z) ∈ (E ⊗ B+
Qp)ψ=0 and

L̃p,i = Coli(z) ∈ ΛE where z is the image of the localisation of zKato (after

twisting) under (h1
Iw)−1.

Below is a list of assumptions which we need for establishing some of the

properties of these Coleman maps and p-adic L-functions.

• Assumption (A): k ≥ 3.

• Assumption (B): ap is not of the form pj + pk−2−j for some integer j.

• Assumption (C): vp(ap) > b(k − 2)/(p− 1)c.

• Assumption (D): p ≥ k − 1.
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Additionally, we always assume that the eigenvalues of ϕ on D(Vf ) are not

integral powers of p as before.

7.2.2 Properties

Decomposition of p-adic L-functions

Let α and β be the roots of the quadratic X2−apX + pk−1. By Theorem 2.3.1,

we can associate to α and β p-adic L-functions Lp,α and Lp,β respectively. We

show that there is a decomposition of these p-adic L-functions in terms of Lp,i

and L̃p,i, i = 1, 2. This generalises (2.9) and (2.10) for the case ap = 0 and

(2.16) and (2.17) for the case k = 2.

Let ν1, ν2 and ν̄1, ν̄2 be ‘good bases’ for D(Vf ) and D(Vf̄ ) respectively. Then,

ν1,1 ∈ D0(Vf (1)) and ν̄1,k−1 ∈ D0(Vf̄ (k − 1)) for i = 1, 2. Under the pairing

[ , ] : D(Vf (1))× D(Vf̄ (k − 1))→ D(E(1)) = E · e1t
−1, (7.8)

we have [ν1,1, ν̄1,k−1] = 0. By applying ϕ, we have [ν2,1, ν̄2,k−1] = 0, too. We

also have [ν1,1, ν̄2,k−1] = −[ν2,1, ν̄1,k−1] 6= 0. Without loss of generality, we may

assume this common quantity is 1.

Proposition 7.2.2. Let νi and ν̄i be as above. For all x ∈ D(Tf̄ (k − 1))ψ=1,

M
(
−Lν2(h1

Iw(x)) Lν1(h1
Iw(x))

)
=
(
Col1(x) Col2(x)

)
M ′

as row vectors, where Lη is as defined by (2.7) for η = ν1, ν2 and M ′ =(
t
πq

)k−1

PTM−1 and M is as defined in Section 1.3.4.

Proof. Proved by S. Zerbes, see [LLZ10, Proposition 3.19].

Let ηα and ηβ be as in Theorem 2.3.5, then

Lηα(zKato) = Lp,α and Lηβ (zKato) = Lp,β .

By elementary calculations, ηα = α−1ν1 − ν2 and ηβ = β−1ν1 − ν2. Therefore,

on writing

M ′ =
(
m11 m12

m21 m22

)
,

Definition 7.2.1 and Proposition 7.2.2 implies

M(Lp,α) = (α−1m12 +m11)Lp,1 + (α−1m22 +m21)Lp,2,

M(Lp,β) = (β−1m12 +m11)Lp,1 + (β−1m22 +m21)Lp,2.
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Hence, Lp,1 and Lp,2 can be written as

Lp,1 =
(β−1m22 +m21)M(Lp,α)− (α−1m22 +m21)M(Lp,β)

(β−1 − α−1) det(M ′)
, (7.9)

Lp,2 =
(β−1m12 +m11)M(Lp,α)− (α−1m12 +m11)M(Lp,β)

(α−1 − β−1) det(M ′)
. (7.10)

Let x ∈ D(Vf̄ (k − 1))ψ=1. By Proposition 7.2.2 and (7.6),

(1− ϕ)x = M ◦ L1,ν1 ◦ h1
Iw(x)ν̄2,k−1 −M ◦ L1,ν2 ◦ h1

Iw(x)ν̄1,k−1

Therefore, by the definition of Coli,(
Col1 Col2

)
· [(1 + π)M ′] = M

(
−Lν2 ◦ h1

Iw Lν1 ◦ h1
Iw

)
.

Let M = M−1[(1 + π)M ′] ∈M(2,H(G∞)), then

(
Col1 Col2

)
M =

(
−Lν2 ◦ h1

Iw Lν1 ◦ h1
Iw

)
. (7.11)

Therefore, by exactly the same calculation as above, we have:

Lp,α = (α−1m12 +m11)L̃p,1 + (α−1m22 +m21)L̃p,2 (7.12)

Lp,β = (β−1m12 +m11)L̃p,1 + (β−1m22 +m21)L̃p,2 (7.13)

where
(
mij

)
= M .

Interpolating properties

Proposition 7.2.3. Let θ be a primitive character modulo p, then

θ(L̃p,1) =
τ(θ)
pk−1

· L(fθ−1 , 1)

Ωθ(−1)
f

,

θ(L̃p,2) = 0.

Similarly, if θ is the trivial character, then

θ(L̃p,1) =
ap − pk−2 − 1

pk−1
· L(f, 1)

Ω+
f

,

θ(L̃p,2) =
(

1
p
− 1
)
· L(f, 1)

Ω+
f

.

Proof. Since

M ′ = (t/πq)k−1PTM−1 = (t/πq)k−1ϕ(M−1)ATϕ
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and M |π=0 = I, we have M ′|π=(ζ−1) = ATϕ for any pth root of unity ζ. By

the compatibility of Fourier transforms (see Theorem 7.4.1 below), we have

θ(M) = ATϕ for any character θ modulo p. By (7.12) and (7.13), we have

θ(L̃p,1) =
(β−1ap − 1)θ(Lp,α)− (α−1ap − 1)θ(Lp,β)

(β−1 − α−1)pk−1
,

θ(L̃p,2) =
(β−1pk−1)θ(Lp,α)− (α−1pk−1)θ(Lp,β)

(α−1 − β−1)pk−1
.

Hence, we are done by the values of θ(Lp,α) and θ(Lp,β) as given in [AV75] and

[MTT86].

Corollary 7.2.4. If assumption (A) holds, then L̃p,i 6= 0 for i ∈ {1, 2}. More-

over, if η is a character of ∆, then L̃ηp,1 6= 0.

Remark 7.2.5. We see that the interpolating properties of L̃p,1 and L̃p,2 at

characters modulo p are independent of the choice of n1, n2 as long as we have

fixed a pair of ‘good bases’ for D(Vf ) and D(Vf̄ ).

Remark 7.2.6. It is not hard to see that M−1(Lp,i) has the same interpolating

properties as L̃p,i at characters modulo p for i = 1, 2 because the action of G∞

on N(Tf̄ (k−1)) is trivial modulo π, so M(Lp,i) ≡ L̃p,i mod ϕ(π) by comparing

(7.5) and Definition 7.1.6.

7.2.3 Infinitude of zeros

We generalise [Pol03, Theorem 3.5] beyond the case ap = 0 using our decompo-

sition of Lp,α and Lp,β .

Proposition 7.2.7. Let η be a character of ∆, then either Lηp,α or Lηp,β has

infinitely many zeros.

Proof. Assume the contrary, then [Pol03, Lemma 3.2] implies that Lηp,α and

Lηp,β are O(1).

By [BB10, Lemmas 3.3.5 and 3.3.6], the entries of M are O(logmp ) where

m = max{vp(α), vp(β)} < k − 1. Therefore, with the notation above, mij =

O(logmp ) for i, j ∈ {1, 2}. In particular, the η-component of

(β−1m22 +m21)Lp,α − (α−1m22 +m21)Lp,β

is O(logmp ). By (7.9), the quantity above is divisible by (t/πq)k−1 ∼ logk−1
p

which forces Lηp,1 = 0 contradicting Corollary 7.2.3 and Remark 7.2.6.
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As in [Pol03, Theorem 3.5], we have:

Corollary 7.2.8. If α /∈ Ff (η), then both Lηp,α and Lηp,β have infinitely many

zeros.

7.3 Modular forms with vp(ap) > b(k − 2)/(p− 1)c

Under assumption (C), a canonical basis for N(Tf̄ ) has been constructed in

[BLZ04]. In this section, we study this basis and prove the surjectivity of Col1

and Col1.

Define

log+(1 + π) =
∏
n≥0

ϕ2n+1(q)
p

and log−(1 + π) =
∏
n≥0

ϕ2n(q)
p

.

Write m = b(k − 2)/(p− 1)c and let zi be elements of Qp such that

pm
(

log−(1 + π)
log+(1 + π)

)k−1

=
∑
i≥0

ziπ
i,

then [BLZ04, Proposition 3.1.1] says that

z =
k−2∑
i=0

ziπ
i ∈ Zp[[π]].

Theorem 7.3.1 (Berger-Li-Zhu). Under assumption (C), i.e. vp(ap) > m,

there is a canonical basis of N(Tf̄ ) such that the matrix of ϕ with respect to this

basis, P , is given by (
0 −1

qk−1 δz

)
where δ = ap/p

m.

It is easy to check that this basis reduces to a ‘good basis’ of D(Vf̄ ). We define

the Coleman maps with respect to this basis. For any x ∈ D(Tf̄ (k − 1))ψ=1

with

x = π1−k (x1 x2

)(n1

n2

)
⊗ ek−1,

we can express Coli(x), i = 1, 2, in terms of x1 and x2:

Col1(x) = x2 − ϕ(x1) + δzx1, (7.14)

Col2(x) = −qk−1x1 − ϕ(x2). (7.15)
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7.3.1 Surjectivity

Image of Col1

We first give a few preliminary lemmas.

Lemma 7.3.2. If n ≥ 0, then ϕn(M−1)(ATϕ)n = ϕn−1(PT ) · · ·ϕ(PT )PTM−1.

Moreover, as n→∞, the quantity above tends to 0.

Proof. The equality follows from (7.2) and induction. For the limit, note that

M |π=0 = I, hence ϕn(M) → I as n → ∞. Since the eigenvalues of Aϕ are α

and β and αn, βn → 0 as n→∞, we are done.

Lemma 7.3.3. Let x = π1−k (x1 x2

)(n1

n2

)
⊗ ek−1. Then, ψ(x) is given by

(
ψ(x1δz + x2) −ψ(qk−1x1)

)
π1−k

(
n1

n2

)
Proof. Recall that ϕ(π) = πq, we have

x = π1−k (x1 x2

)
(PT )−1

(
ϕ(n1)
ϕ(n2)

)
=

(
x1δz + x2 −qk−1x1

)
ϕ(π)1−k

(
ϕ(n1)
ϕ(n2)

)
,

hence the result

Lemma 7.3.4. For all n ≥ 1, the constant term of ψ(qn) is pn−1.

Proof. Induction.

Lemma 7.3.5. If g(π) ∈ E ⊗ B+
Qp , then there exist unique ai ∈ E for 1 ≤ i ≤

k − 1 such that g(π) =
∑k−1
i=1 ai(π + 1)i mod πk−1.

Proof. Proved by S. Zerbes (see [LLZ10, Lemma 4.5]).

Proposition 7.3.6. Under assumption (C), we have
(
πk−1OE ⊗ A+

Qp

)ψ=0

⊂

Col1
(
D(Tf̄ (k − 1))ψ=1

)
.

Proof. Recall that (7.4) says

(1− ϕ)x =
(
Col1(x) Col2(x)

)
· (πq)1−kPT

(
n1

n2

)
⊗ ek−1.

For any y1 ∈
(
πk−1OE ⊗ A+

Qp

)ψ=0

, Theorem 7.3.1 implies that

y :=
(
y1 0

)
· (πq)1−kPT

(
n1

n2

)
⊗ ek−1 =

(
0 y1/π

k−1
)(n1

n2

)
⊗ ek−1.
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If n is a non-negative integer, we have

ϕn(y) =
(
0 ϕn(y1/π

k−1)
)
ϕn−1(PT ) · · ·ϕ(PT )PT

(
n1

n2

)
⊗ ek−1

=
(
0 ϕn(y1/π

k−1)
)
ϕn(M−1)(ATϕ)nM

(
n1

n2

)
⊗ ek−1.

Hence, Lemma 7.3.2 implies that ϕn(y) → 0 as n → ∞ and the series x :=∑
n≥0 ϕ

n(y) converges to an element of D(Tf̄ (k − 1))ψ=1 with (1 − ϕ)x = y.

Therefore, y1 = Col1(x).

Proposition 7.3.7. Under assumptions (B), (C) and (D), the map Col1 :

D(Vf̄ (k − 1))→
(
E ⊗ B+

Qp

)ψ=0

is surjective.

Proof. By Proposition 7.3.6, if y1 ∈
(
πk−1E ⊗ B+

Qp

)ψ=0

, then y1 ∈ Im(Col1).

For an arbitrary y1 ∈
(
E ⊗ B+

Qp

)ψ=0

, there exists y′ in the E-linear span of

{(1+π)i}1≤i<k such that y1 +ϕ(y′) is divisible by πk−1 by Lemma 7.3.5. Then,

as in the proof of Proposition 7.3.6,∑
n≥0

ϕn
((

0 (y1 + ϕ(y′))/πk−1
)(n1

n2

))
converges to an element x ∈ N(Vf̄ (k − 1)). By Lemma 7.3.3 and the fact that

ψ(y1) = 0, we have

ψ(x)− x = ψ

((
0 (y1 + ϕ(y′))/πk−1

)(n1

n2

))
= π1−k (y′ 0

)(n1

n2

)

Let x′ = x+ π1−k (x1 x2

)(n1

n2

)
where xi ∈ E ⊗ B+

Qp . Then

ψ(x′)− x′ = π1−k (y′ − x1 + ψ(x1δz + x2) −x2 − ψ(qk−1x1)
)(n1

n2

)
.

Hence, x′ ∈ D(Vf̄ (k − 1))ψ=1 iff

x2 = −ψ(qk−1x1), (7.16)

y′ = x1 − ψ(x1δz) + ψ2(qk−1x1). (7.17)

Let x1 =
∑k−1
i=1 βi(1 + π)i with βi ∈ E. Since the degrees of δz and qk−1 are at

most k−2 and (p−1)(k−1) respectively, the degrees of ψ(x1δz) and ψ2(qk−1x1)

are at most (k − 2 + k − 1)/p and ((p− 1)(k − 1) + k − 1)/p2 respectively. But
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we assume that p ≥ k− 1, so both ψ(x1δz) and ψ2(qk−1x1) are scalar multiples

of (1 + π). Write

y′ =
k−1∑
i=1

αi(1 + π)i and δz =
k−2∑
i=0

γi(1 + π)i

where αi, γi ∈ E. Then, (7.17) holds iff

αi = βi for i ≥ 2

α1 = β1 −
∑
i+j=p

βiγj + βp2−(k−1)(p−1)

where γi = βi = 0 if i < 0. But p2 − (k − 1)(p − 1) > 1 and p|γp−1 by defi-

nition, so the matrix relating (αi)1≤i≤k−1 and (βi)1≤i≤k−1 is upper triangular

with nonzero entries on the diagonal. Therefore, there is a bijection between

(αi)1≤i≤k−1 ∈ Ek−1 and (βi)1≤i≤k−1 ∈ Ek−1. In other words, given any y′ as

above, there exists a unique x1 (and hence x2) such that x′ ∈ D(Vf̄ (k− 1))ψ=1.

For any 0 ≤ j ≤ k − 2, we can therefore choose y1 (and hence y′) such that

x1 ≡ πj mod πj+1. In this case,

Col1(x′) = y1 + ϕ(y′)− ψ(qk−1x1)− ϕ(x1) + x1δz

≡ −ψ(qk−1x1)− ϕ(x1) + x1δz mod πk−1

≡ (−pk−2−j − pj + ap)πj mod πj+1,

where we deduce the last line from the previous one using Lemma 7.3.4 and the

fact that πq = ϕ(π). Therefore, we are done by assumption (B).

Image of Col1

By Theorem 7.1.1, there is a natural isomorphism of ΛE-modules

J : (ϕ∗N(Vf̄ (k − 1)))ψ=0 → Λ⊕2
E

In particular, J is additive and linear over E. We write n′i = ϕ(ni ⊗ π1−kek−1)

for i ∈ {1, 2}.

Proposition 7.3.8. Let y ∈ (ϕ∗N(Tf̄ (k − 1)))ψ=0 be of the form y = y2n
′
2 for

some y2 ∈
(
OE ⊗ A+

Qp

)ψ=0

, then there exists z ∈ ΛOE and x̃ ∈ N(Tf̄ (k−1))ψ=1

such that

J(y)− J ◦Col(x̃) = (0, z).
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Proof. Proved by S. Zerbes, see [LLZ10, Corollary 4.31].

Theorem 7.3.9. If assumptions (B), (C) and (D) hold, then the map Col1 :

D(Vf̄ (k − 1))ψ=1 → ΛE is surjective.

Proof. By Proposition 7.3.7, there exists x ∈ D(Tf̄ (k − 1))ψ=1 such that

Col(x) = $m(1 + π)n′1 + y2n
′
2

for some y2 ∈
(
OE ⊗ A+

Qp

)ψ=0

and an integer m. Proposition 7.3.8 says that

there exist z ∈ ΛOE (G) and x̃ ∈ D(Tf̄ (k − 1))ψ=1 such that

J(y2n
′
2)− J ◦Col(x̃) = (0, z).

But J($m(1 + π)n′1) = ($m, 0), hence J ◦ Col(x) − J ◦ Col(x̃) = ($m, z) and

Col1(x− x̃) = $m. In particular, 1 is in the image and we are done.

7.4 Compatibility of Coleman maps

We now show the compatibility of the definitions of the Coleman maps defined

in Chapter 2 and the ones from Section 7.2. We first state a result of D. Loeffler:

Theorem 7.4.1. If F ∈ H∞(G∞) and n ≥ 2, then the following are equivalent:

(1) M(F ) is divisible by Φn(1 + π) = ϕn−1(q).

(2) F is zero at all primitive Dirichlet character modulo pn.

(3) F is divisible by Φn−1(γ).

For n = 1, the same holds with (2) replaced by

(2’) F is zero at all Dirichlet character modulo p.

Proof. Proved by D. Loeffler, see [LLZ10, Theorem 5.4].

7.4.1 The case ap = 0

When ap = 0, we can work out the matrix M ′ defined in Proposition 7.2.2

explicitly.

Lemma 7.4.2. The matrix M ′ is given by(
0 (log+(1 + π))k−1

−(log−(1 + π)/q)k−1 0

)
.
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Proof. With respect to the basis n1, n2 of N(Vf̄ ) over B+
Qp , as chosen in [BLZ04],

the matrices of ϕ and g ∈ G∞ are given by

P =
(

0 −1
qk−1 0

)
and


(

log+(1+π)
g(log+(1+π))

)k−1

0

0
(

log−(1+π)
g(log−(1+π))

)k−1

 ,

(7.18)

which implies that

M =
(

(log+(1 + π))k−1 0
0 (log−(1 + π))k−1

)
. (7.19)

The result then follows from explicit calculations.

Lemma 7.4.3. We have ϕ(log−(1 + π)) = log+(1 + π) and ϕ(log+(1 + π)) =
p
q log−(1 + π).

Proof. Immediate.

Lemma 7.4.4. Let F ∈ H∞(G∞). Then F is divisible by log±p,k if and only if

M(F ) is divisible by ϕ
(
log±(1 + π)

)k−1
.

Proof. Let m ≥ 1. Since the action of Twj on H∞(G∞) corresponds to that

of ∂j on Cp ⊗ B+,ψ=0
rig,Qp for any j, we have Φm(u−jγ)|F iff ϕm(q)|∂j(M(F )) by

Theorem 7.4.1. But ϕm(q) and ∂(ϕm(q)) are coprime. Hence, by induction on

k, we conclude that

k−2∏
j=0

Φm(u−jγ)
∣∣∣F iff (ϕm(q))k−1

∣∣∣M(F ).

Proposition 7.4.5. There exists a± ∈ Λ×E such that

M =
(

0 −a− log−p,k
a+ log+

p,k 0

)
.

Proof. As a ΛE-module, X± := ϕ(log±(1 + π))k−1E ⊗ B+,ψ=0
Qp is generated by

(1+π)ϕ(log±(1+π))k−1. By Lemma 7.4.4 and the fact that M preserves orders,

M(log±p,k ΛE) = X±. Hence the result.

Recall that the ±-Coleman maps are defined by

log+
p,k Col+ = Lν1 and log−p,k Col− = Lν2 .

Therefore, by (7.11), we have:
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Corollary 7.4.6. Let a± be as in Proposition 7.4.5, then a−Col1 = Col− and

a+ Col2 = Col+.

Description of kernels

By the calculations above, we see that Col1 is related to Col− by the following:

log−p,k Col− = M(ϕ(log−(1 + π))k−1 Col1 ◦h1
Iw)

In particular, we have ker(Col1) = h1
Iw(ker(Col−)) and a similar statement

can be made about Col+ and Col2. We now find ker(Coli) for i = 1, 2 using

(7.14) and (7.15) and show that they do agree with ker(Col±) as described in

Chapter 3.

By (7.3) and the formula for M above, we have for any x ∈ D(Vf̄ (k−1))ψ=1,

x = x1ν̄1,k−1 + x2ν̄2,k−1 where

x1 = x′1(log−(1 + π))k−1 and x2 = x′2(log+(1 + π))k−1

for some x′1, x
′
2 ∈ E⊗B+

Qp . We write fi for the power series such that fi(π) = xi,

i = 1, 2.

Lemma 7.4.7. Let x be as above. Then pk−2f1(0) + f2(0) = 0.

Proof. By [Ber03, Theorem II.6], we have

exp∗0,1
(
h1

Qp,V (x)
)

= (1− p−1ϕ−1)∂V (x) (7.20)

where V = Vf̄ (k − 1). Since ∂V (x) = f1(0)ν̄1,k−1 + f2(0)ν̄2,k−1, we have(
1− p−1ϕ−1

)
∂V (x) =

(
f1(0)− p−1f2(0)

)
ν1,k−1 +

(
pk−2f1(0) + f2(0)

)
ν2,k−1.

The image of exp∗0,1 is contained in D0(Vf̄ (k−1)), so pk−2f1(0)+f2(0) = 0.

Lemma 7.4.8. Let x ∈ D(Vf̄ (k − 1))ψ=1, and write x = x1ν̄1,k−1 + x2ν̄2,k−1

as above. Then

(i) x ∈ ker(Col1) if and only if ϕ(x1) = −pk−1ψ(x1);

(ii) x ∈ ker(Col2) if and only if ϕ(x2) = −pk−1ψ(x2).

Proof. We only prove this for Col1, as the proof for Col2 is analogous. Note that

the condition that ψ(x) = x translates to ψ(x1) = −p1−kx2 and ψ(x2) = x1.

But Col1(x) = x′2 − ϕ(x′1) = 0 iff x2 = ϕ(x1). Hence the result.
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Proposition 7.4.9. Let x be as above, then

(i) x ∈ ker(Col1) if and only if the following equations hold

Trn/n−1(f1(ζpn − 1)) = −p2−kf1(ζpn−2 − 1), n ≥ 2 (7.21)

Tr1/0(f1(ζp − 1)) = −(1 + p2−k)f1(0); (7.22)

(ii) x ∈ ker(Col2) if and only if

Trn/n−1(f2(ζpn − 1)) = −p2−kf2(ζpn−2 − 1), n ≥ 2

Tr1/0(f2(ζp − 1)) = −(1 + pk−2)f2(0).

Proof. We prove the proposition for Col1. Recall that

ϕψ(x1) = p−1
∑
ζp=1

f1

(
ζ(1 + π)− 1

)
.

Hence, ϕ(x1) = −pk−1ψ(x1) implies that∑
ζp=1

f1

(
ζ(1 + π)− 1

)
= −p2−kϕ2

(
f1(π)

)
. (7.23)

Let n ≥ 2. On substituting π by ζpn − 1 in (7.23), we have

Trn/n−1(f1(ζpn − 1)) =
∑
ζp=1

f1(ζζpn − 1) = −p2−kf1(ζpn−2 − 1).

Similarly, we obtain the second condition by substituting π by 0 in (7.23).

Conversely, assume that (7.21) holds for all n ≥ 2, then ϕ(f1)+pk−1ψ(f1) =

0 at ζpn − 1. Recall that x1 = x′1(log−(1 + π))k−1 where x′1 ∈ E ⊗ B+
Qp . Since

ϕ(x1) + pk−1ψ(x1) = (ϕ(x′1) + ψ(qk−1x′1))(log+(1 + π))k−1,

the power series in Q ⊗ Zp[[X]] corresponding to (ϕ(x′1) + ψ(qk−1x′1)) has in-

finitely many zeros, so it must be zero itself and we are done.

Corollary 7.4.10. For x ∈ D(Vf̄ (k − 1))ψ=1, write en(x) for the image of

the nth component of h1
Iw(x) under the dual exponential exp∗n,1. Let i = 1

(respectively i = 2), then x ∈ ker(Coli) iff

e0(x) = 0 and en+1(x) = p−1en(x) ∀n ∈ S∓∞

where S±∞ are as defined in Chapter 3.
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Proof. Again, we only prove this for i = 1. By [CC99, Théorème IV.2.1], we

have en(x) = p−n∂V (ϕ−n(x)) for all n ≥ 1. But ϕ−2 is the multiplication by

−pk−1 on D(Vf̄ (k − 1)). Using again that Im(exp∗n,1) ⊂ D0(V ), we see that

e2n(x) = p−2n · (−p)n(k−1)f1(ζp2n − 1)ν̄1,k−1

e2n+1(x) = p−2n−1 · (−p)n(k−1)f2(ζp2n+1 − 1)ν̄1,k−1

and f2(ζp2n − 1) = f1(ζp2n−1 − 1) = 0 for all n ≥ 1. Therefore, (7.21) holds for

any 2n − 1 and it holds for 2n if and only if e2n(x) = Tr2n+1/2n(e2n+1(x)) =

p−1e2n−1(x).

Now e0(x) = (f1(0) − p−1f2(0))ν̄1,k−1 by (7.20) and pk−2f1(0) + f2(0) = 0

by Lemma 7.4.7, so

e0(x) = (1 + pk−3)f1(0)ν̄1,k−1 = −(p2−k + p−1)f2(0)ν̄1,k−1.

The condition (7.22) is therefore equivalent to f1(0) = 0, which in turns is

equivalent to e0(x) = 0.

Therefore, the two descriptions of the kernels (Corollaries 3.4.1 and 7.4.10)

agree via the isomorphism h1
Iw.

7.4.2 The case k = 2

We now assume that f is a modular form as in Section 2.5. Since condition (C)

holds and k = 2, with respect to the canonical basis of N(Vf ) given above, P is

simply (
0 −1
q ap

)
. (7.24)

Write Bi∞ (respectively Bin) for the matrix obtained from Ai∞ (respectively

Ain) by replacing Φm(γ) by ϕm−1(q) for all m. Then, we have:

Lemma 7.4.11. Under the notation of Section 7.2, M = B0
∞.

Proof. By (7.24), (B−nn )T = Pϕ(P ) · · ·ϕn−1(P )A−nϕ . For g ∈ G∞, we write

G
(n)
g = (B−nn )T · g

(
(B−nn )T

)−1. Then,

P · ϕ
(
G(n)
g

)
· g(P )−1 = G(n+1)

g .

Hence, if we write Gg for the limit of G(n)
g as n→∞, then

P · ϕ (Gg) · g(P )−1 = Gg,
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It is easy to check that Gg satisfies Gg1g2 = Gg1 · g1(Gg2) for any g1, g2 ∈ G∞.

Hence, we recover the action of G∞ on the Wach module N(Vf ). In other words,

Gg is the matrix of g with respect to the basis n1, n2 chosen in Section 7.3. Since

Gg = (B0
∞)T · g

(
(B0
∞)T

)−1 and Gg|π=0 = I, we have

B0
∞

(
n1

n2

)
∈
(

(E ⊗ B+
rig,Qp)⊗ N(Vf )

)G∞
= D(Vf )

and M = B0
∞.

We write Ac = det(A)A−1 if A is an invertible matrix, then we have:

Corollary 7.4.12. The matrix M ′ can be obtained from (A−1
∞ )c by replacing

Φm by ϕ(q)m.

Proof. Explicit calculation.

Recall that (2.15) says that

(
Lϕ(ω)(z) −Lω(z)

)
A−1
∞ =

(
Colϑ(z) Colυ(z)

)
log(γ)/(γ − 1)

for any z ∈ H1
Iw(Vf̄ (1)). Hence, on setting ν1 = −ω, (7.11) implies that

(
Col1 Col2

)
MA−1

∞ =
(
Colϑ ◦h1

Iw Colυ ◦h1
Iw

)
logp(γ)/(γ − 1). (7.25)

By considering the determinant of ΩVf (1),1 (see the proof of Lemma 4.4.2),

we see that the images of

(
Col1 Col2

)
and

(
Colϑ Colυ

)
are isomorphic as ΛE-modules, so (7.25) implies that there exists A ∈ GL2(ΛE)

such that MA−1
∞ = [logp(γ)/(γ − 1)]A. Hence,

(
Col1 Col2

)
A =

(
Colϑ ◦h1

Iw Colυ ◦h1
Iw

)
.

We also see that M and (A−1
∞ )c agree up to an element in GL2(ΛE) which is

a generalisation of Proposition 7.4.5 because of the description of M ′ in Corol-

lary 7.4.12.
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7.5 p-ordinary modular forms

We now assume that f is ordinary at p. Then, Vf̄ has no quotient isomorphic

to E(−k + 1), so results from Section 7.1 hold.

As before, we assume ε(p) = 1. Let α be the root of X2 − apX + pk−1

which is a p-adic unit and let β be the one with p-adic valuation k − 1. By

[Kat04, Section 17], there exists an 1-dimensional GQp -subrepresentation V ′
f̄

in

Vf̄ . Moreover, V ′
f̄

has Hodge-Tate weight 0 and D(V ′
f̄
) can be identified with

the α-eigenspace of ϕ in D(Vf̄ ). We fix a nonzero element ν̄1 ∈ D(V ′
f̄
). Then,

ν̄1 is a basis of N(Vf̄ ) over E ⊗ B+
Qp . Let ν̄2 be a nonzero β-eigenvector of ϕ in

D(Vf̄ ). We lift ν̄1, ν̄2 to a basis n1 = ν̄1, n2 of N(Vf̄ ), which defines a lattice Tf̄

in Vf̄ as in the supersingular case. Then, the change of basis matrix M , with(
ν̄1

ν̄2

)
= M

(
n1

n2

)
,

is lower triangular. By considering determinant, we can choose n2 so that the

diagonal entries of M are 1 and (t/π)k−1. With respect to this basis, the

associated Coleman maps Coli and Coli, i ∈ {1, 2} given in Section 7.1 enable

us to define:

Definition 7.5.1. For i = 1, 2, define Lp,i = Coli(z) ∈ (E ⊗ B+
Qp)ψ=0 and

L̃p,i = Coli(z) ∈ ΛE as in Definition 7.2.1.

Since ϕ(n1) = αn1, the matrix P as defined in Section 7.1 is upper triangular

and there exists a unit u in E ⊗ B+
Qp such that

P =
(
α ∗
0 uqk−1

)
.

Therefore, (7.6) becomes

(1− ϕ)(x) =
(
Col1(x) Col2(x)

)(α( t
πq )k−1 0
∗ u

)(
ν̄1,k−1

ν̄2,k−1

)
. (7.26)

Lemma 7.5.2. Let ν1, ν2 be a basis of D(Vf ) such that ϕ(ν1) = αν1 and

ϕ(ν2) = βν2. Then

[νi,1, ν̄i,k−1] = 0

for i = 1, 2 where [ , ] is the pairing as in (7.8).
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Proof. Assume m1 := [ν1,1, ν̄1,k−1] 6= 0. Since [ , ] is compatible with ϕ, we

have

ϕ[ν1,1, ν̄1,k−1] = [ϕ(ν1,1), ϕ(ν̄1,k−1)]

p−1m1 = [αp−1ν1,1, αp
1−kν̄1,k−1]

pk−1m1 = α2m1.

Hence, α2 = pk−1, which is a contradiction. The proof for i = 2 is similar.

As in Section 7.2.2, we may assume that [ν1,1, ν̄2,k−1] = −[ν2,1, ν̄1,k−1] = 1

and an analogue of Proposition 7.2.2 says that

M
(
−Lν2(h1

Iw(x)) Lν1(h1
Iw(x))

)
=
(
Col1(x) Col2(x)

)(α( t
πq )k−1 0
∗ u

)
.

In particular, if we apply this to the Kato zeta element, we have

(
−M(Lp,β) M(Lp,α)

)
=
(
Lp,1 Lp,2

)(α( t
πq )k−1 0
∗ u

)
where Lp,β = Lν2(zKato). On applying Theorem 7.4.1, we have

(
−Lp,β Lp,α

)
=
(
L̃p,1 L̃p,2

)(αṽ logp,k 0
∗ ũ

)
where logp,k =

∏k−2
j=0 logp(χ(γ)−jγ)/(χ(γ)−jγ − 1) and ũ, ṽ ∈ Λ×E .

We now say something about Lp,1 and L̃p,1. When Vf is not locally split at

p, Lp,β is conjecturally equal to the critical slope p-adic L-function constructed

in [PS09]. By [Kat04, Theorems 16.4 and 16.6], Lp,β has the same interpolating

properties as Lp,α, namely:

χrθ(Lp,α) =
cθ,r
βn

L(fθ−1 , r + 1) and χrθ(Lp,β) =
cθ,r
βn

L(fθ−1 , r + 1)

(7.27)

where θ is a finite character of conductor pn > 1, 0 ≤ r ≤ k− 2 and cθ,r is some

constant independent of α and β. Note that the values given by (7.27) do not

determine Lp,β uniquely, but it allows us to show that Lp,1, L̃p,1 6= 0.

• Assumption (A’): Vf is not locally split at p and k ≥ 3.

Proposition 7.5.3. If assumption (A’) holds, then Lηp,1, L̃
η
p,1 6= 0 for any char-

acter η of ∆.
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Proof. As in the proof of Proposition 7.2.3, the fact that M |π=0 = I implies

that M ′|π=(ζ−1) = ATϕ for any ζp = 1, where Aϕ =
(
α 0
0 β

)
is the matrix of ϕ

with respect to ν̄1, ν̄2. Therefore, M(Lp,β)(ζ−1) = αLp,1(ζ−1). Since Vf is not

locally split and k ≥ 3, by the above discussion, η(Lp,β) = τ(η)
β L(fη−1 , 1) 6= 0

for any primitive character η modulo p as in the supersingular case. Therefore,

Lηp,1(0) 6= 0. The result for L̃ηp,1 then follows immediately by Remark 7.2.6.

In particular, we see that the interpolating properties of M−1(Lp,1) and L̃p,1

at characters modulo p are the same as that of Lp,β after multiplying a constant.

Remark 7.5.4. If Vf does split locally at p, we can choose n2 = ν̄2 and M

would be diagonal. Then, we have

Lp,β = M−1
(
(t/π)k−1Lp,1

)
= ṽ logp,k L̃p,1.

But it is not known that whether Lp,β is nonzero or not.

7.6 Main conjectures

For i = 1, 2, let ker(Coli)n be the image of ker(Coli) in H1(Qp,n, Tf̄ (k−1)) under

the composition of h1
Iw and the natural projection. We writeH1

f (Qp,n, Vf/Tf (1))i

for the annihilator of ker(Coli)n under the pairing

H1(Qp,n, Tf̄ (k − 1))×H1(Qp,n, Vf/Tf (1))→ E/OE .

This enables us to define

Selip(f/Q(µpn)) = ker

(
Selp(f/Q(µpn))→ H1(Qp,n, Vf/Tf (1))

H1
f (Qp,n, Vf/Tf (1))i

)
.

and Selip(f/Q∞) = lim−→ Selip(f/Q(µpn)). The results in Chapter 5 generalise

directly and (5.13) becomes

H1(Tf̄ (k − 1))→ Im(Coli)→ Selip(f/Q∞)∨ → H2(Tf̄ (k − 1))→ 0. (7.28)

Proposition 7.6.1. Under assumption (A) (if f is supersingular at p) or as-

sumption (A’) (if f is ordinary at p), Selip(f/Q∞) is ΛOE -cotorsion for i = 1, 2.

Moreover, Selip(f/Q∞)η is ΓOE -cotorsion and there exists some ni ≥ 0 such that

$niL̃ηp,i ∈ CharΓOE
(Selip(f/Q∞)∨,η)

where η is any character on ∆ unless f is supersingular at p and i = 2 in which

case η is the trivial character.
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Proof. This is exactly the same as the corresponding results from Section 5.4.

As in (5.14), the first arrow of (7.28) is now injective by the fact that L̃ηp,i 6= 0

and there exist n ∈ Z such that

0→ H1(Tf̄ (k − 1))/Z(Tf̄ (k − 1))→ Im(Coli)/($
niL̃p,i)→ Selip(f/Q∞)∨

→ H2(Tf̄ (k − 1))→ 0.
(7.29)

Corollary 7.6.2. Let η be as above. If assumption (A) (or (A’) depending

on whether f is supersingular or ordinary at p) and the homomorphism GQ →

GLOE (Tf̄ ) is surjective, then Kato’s main conjecture is equivalent to

CharΓOE

(
Selip(f/Q∞)∨,η

)
= CharΓOE

(
Im(Coli)

η/($niL̃ηp,i)
)
. (7.30)

Proof. It follows immediately from (7.29).

By the surjectivity of Col1, we have:

Corollary 7.6.3. If assumptions (A)-(D) hold and η is as above, then Kato’s

main conjecture tensor Q, i.e.

CharΓE

(
H1(Vf )η/Z(Vf )η

)
= CharΓE

(
H2(Vf )η

)
,

is equivalent to

CharΓE

(
Sel1p(f/Q∞)∨,η ⊗Q

)
=
(
L̃ηp,1

)
(7.31)

As before, one inclusion is immediate for both (7.30) and (7.31).



Appendix A

Results in linear algebra

In this appendix, we prove some elementary results in linear algebra which we

have used in the main part of the thesis. Some of them are needed in Appendix B

as well.

A.1 Linear algebra over Lubin-Tate extensions

Lemma A.1.1. Let K be a field of characteristic 0 and K = K0 ⊂ · · · ⊂ Kn a

tower of Galois extensions. Write K(n) = ker(Trn/n−1) and K(0) = K. Then,

as K-vector spaces, we have

Kn = K(0) ⊕K(1) ⊕ · · · ⊕K(n).

Proof. By induction, it is enough to show that Kn = Kn−1 ⊕K(n). It is clear

that Kn−1 ∩K(n) = {0}. If x ∈ Kn, x = (x − rn Trn/n−1(x)) + rn Trn/n−1(x)

where rn = [Kn : Kn−1]−1, so we are done.

Take K = Qp. Let π be a uniformiser of Qp such that π ≡ p mod p2 and

gπ = (1 +X)p + (π − p)X − 1. This is called a good lift of Frobenius in [IP06].

Let Kn be the extension of Qp generated by the πn-torsion of the Lubin-Tate

group associated to gπ with Galois group Gn. Let πn be a primitive πn-torsion

and define

π′n =


πn − 1

p Trn/n−1(πn) = πn + 1 if n > 1,
π1 − 1

p−1 Tr1/0(π1) = π1 + p
p−1 if n = 1,

1 if n = 0.

It is then clear that π′n ∈ K(n).
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Lemma A.1.2. Under the notation of Lemma A.1.1, {π′σn : σ ∈ Gn} generates

K(n) over Qp.

Proof. By [IP06, Proposition 4.4], we have

Kn = Qp[Gn]πn +Kn−1.

Let x ∈ K(n). Since Trn/n−1 πn ∈ Kn−1, we can write x =
∑
σ∈Gn aσπ

′σ
n +y

for some aσ ∈ Qp and y ∈ Kn−1. But Trn/n−1 x = Trn/n−1 π
′σ
n = 0 for all σ, we

have y = 0. Hence we are done.

Proposition A.1.3. Let n ≥ 0 be an integer and

α =
n∑
i=0

xiπ
′
i for some xi ∈ Qp.

Then, the Qp-vector space generated by {ασ : σ ∈ Gn} is given by

⊕
i:xi 6=0

K(i).

Proof. We proceed by induction on |S|. The case |S| = 1 follows directly from

Lemma A.1.2

Write V for the Qp-vector space generated by {ασ : σ ∈ Gn}. Clearly,

V ⊂ ⊕
i:xi 6=0

K(i).

Without loss of generality, we assume that xn 6= 0. Let β =
n−1∑
i=0

xiπ
′
i. Then,

by induction, {βτ : τ ∈ Gn−1} generates
⊕

i∈S\{n}K
(i) over K. Fix τ ∈ Gn−1,

then ∑
σ∈Gn,σ|Kn−1=τ

ασ = pβτ + (Trn/n−1 π
′
n)τ = pβτ .

Therefore, for any τ ∈ Gn−1, βτ ∈ V and π′σn ∈ V for any σ ∈ Gn. Hence we

are done.

A.2 Linear algebra of cyclotomic extensions

We now apply results above to the extension Qp,n of Qp.
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Corollary A.2.1. Let η = a0 +
n∑
i=1

aiζpi where ai ∈ Qp with a1 6= (p − 1)a0,

then the Qp-vector space generated by {ησ : σ ∈ Gn} is given by

Qp +
∑
r∈S

∑
σ∈Gn

Qp · ζσpr .

where S = {r ∈ [1, n] : ar 6= 0}.

Proof. Take π = p and πn = ζpn − 1. Then, π′n = ζpn for n > 1 and π′1 =

ζp+(p−1)−1. Therefore, the result is immediate if a1 = 0 by Proposition A.1.3.

If a1 6= 0, then

η =
(
a0 −

a1

p− 1

)
+ a1π

′
1 +

∑
i>1

aiπ
′
i.

Hence, we can again apply Proposition A.1.3.

Corollary A.2.2. Let η = 1 + ζp + ζp2 + · · ·+ ζpn , then η is a normal basis of

Qp,n over Qp.

Proof. Combine Lemma A.1.1 and Corollary A.2.1.



Appendix B

Coleman maps over
Lubin-Tate extensions

In this appendix, we explain how the construction of Col± can be generalised

to Lubin-Tate extensions of height 1 in place of the cyclotomic extension. This

is the contents of [Lei09a].

B.1 Perrin-Riou’s exponential map over Lubin-
Tate extensions

We first review the generalisation of Perrin-Riou’s exponential to Lubin-Tate

extensions given in [Zha04b]. Fix π a uniformiser of Zp. Let α be the p-adic

unit in Z×p such that π = αp. Let g be a lift of Frobenius with respect to π and

denote the Lubin-Tate group associated to π (which is independent of g up to

isomorphisms over Zp) by F . We write [·]F : Zp → End(F) for the natural ring

homomorphism associated to F .

Let Kn denote the extension of Qp obtained by adjoining the πn-torsions

of F and write Gn for the Galois group of Kn over Qp for 0 ≤ n ≤ ∞. In

particular, Gn ∼= (Z/pn)× and G∞ ∼= G1 × Gal(K∞/K1) ∼= Z/(p − 1) × Zp.

Note that Gn denotes something less general in the main part of the thesis, but

since it should not cause confusions, we use the same notation here. We abuse

notation in a similar manner for other objects in later parts of the appendix.

Let κ be the character of GQp given by its action on the Tate module of F .

Then, σω = [κ(σ)]F (ω) for all ω ∈ F [π∞] and σ ∈ GQp . Moreover, κ = χψ for

some unramified character ψ.
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Let Ξ denote the completion of the maximal unramified extension of Qp

and O its ring of integers. Let η : Gm → F be an isomorphism between the

multiplicative group and F , then η ∈ O[[X]]. Moreover,

η(X) = ΩX + (higher degree terms)

where Ω is a p-adic unit. The lift of Frobenius g satisfies g◦η = ηϕ◦((1+X)p−1)

where ϕ is the Frobenius of Gal(Qur
p /Qp), which acts on η by acting on its

coefficients. In particular, Ωϕ = αΩ.

Definition B.1.1. We define Ξ[[X]]ψ to be the set of power series f over Ξ

such that σf(X) = f((1 +X)ψ(σ) − 1)∀σ ∈ GQp .

Remark B.1.2. [Zha04b, (1.13)] says that Ξ[[X]]ψ contains η.

The significance of Ξ[[X]]ψ is given by the following:

Lemma B.1.3. Let f ∈ Ξ[[X]]ψ and ζ a pnth root of unity. Then f(ζ−1) ∈ Kn.

Proof. By definition, σf(X) = f((1 +X)ψ(σ) − 1) for any σ ∈ GQp . Therefore,

we have

σ(f(ζ − 1)) = (σf)(ζσ − 1)

= f(ζχ(σ)ψ(σ) − 1)

= f(ζκ(σ) − 1).

If, in addition, σ ∈ GKn , then κ(σ) ∈ 1 + pnZp. Hence, σ(f(ζ − 1)) = f(ζ − 1)

for any σ ∈ GKn , so we are done.

Fix a crystalline representation V of GQp . We write r(V ) for the slope of ϕ

on D(V ). We again assume that the eigenvalues of ϕ on D(V ) are not integral

powers of p. On abusing notation, we write ϕ for the map ϕ⊗ ϕ on Ξ⊗ D(V ).

For k ∈ Z, we write V (κk) for the representation of V twisted by κk. Then,

D(V (κk)) = t−kπ D(V ) where tπ = Ωt since GQp acts on tπ via κ by [Zha04b,

Section 2].

Lemma B.1.4. The de Rham filtrations satisfy Di(V (κj)) = t−jπ Di+j(V ).
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Proof. By definitions, we have

Di(V (κj)) = (t−jπ D(V )) ∩ tiB+
dR

= t−jπ (D(V ) ∩ ti+jΩjB+
dR)

= t−jπ (D(V ) ∩ ti+jB+
dR) (since Ω is a p-adic unit)

= t−jπ Di+j(V ).

Hence we are done.

Let B be a Banach p-adic space. For r ∈ R≥0, Dr(Qp, B) denotes the set of

tempered B-valued distributions of order r (i.e. of order O(logrp)) on the locally

analytic functions with compact support in Qp. It is equipped with an action

ϕD, which is defined by
∫
fϕD(µ) =

∫
f(px)µ. Similarly, if A is a compact open

subset of Qp, Dr(A,B) denotes the set of tempered distributions of order r on

A with values in B.

We define Dr(Qp,Ξ⊗D(V ))ψ to be the subset of Dr(Qp,Ξ⊗D(V )) consisting

of all the distributions µ satisfying:

σ

(∫
Qp
fµ

)
=
∫

Qp
f(ψ(σ)x)µ ∀σ ∈ GQp .

Remark B.1.5. Let µ ∈ Dr(Zp,Ξ ⊗ D(V )). Then, µ ∈ Dr(Zp,Ξ ⊗ D(V ))ψ iff

its Amice transform Aµ(X) =
∫

Zp(1 +X)xµ is in Ξ[[X]]ψ ⊗D(V ) (see [Zha04b,

Proposition 2.4(i)]).

We define D̃r(Z×p ,Ξ ⊗ D(V )) to be lim
←
Tw

Dr
(
Z×p ,Ξ⊗D(V (κk))

)
where Tw

is the twist map given by µ 7→ (−tx)−1µ. It is well-defined by [Zha04a,

Lemma 3.6]. We define D̃r(Qp,Ξ⊗D(V )) similarly. By [Zha04b, Theorems 3.3

and 3.6], the generalised Perrin-Riou exponential is given by:

Theorem B.1.6. Let h be a positive integer such that D−h(V ) = D(V ). Then,

there is a map

Eh,V : D̃r(Qp,Ξ⊗ D(V ))ϕD⊗ϕ=1,ψ → H1
(
K∞,Dr+r(V )+h(Z×p ,D(V ))

)G∞
such that for k ≥ 1− h∫

Z×p
xkEh,V (µ) = (k + h− 1)! expk

(
(1− ϕ)−1

(
1− ϕ−1

p

)∫
Z×p

µ

(−tx)k

)
,

∫
1+pnZp

xkEh,V (µ) = (k + h− 1)! expk

(
ϕ−n

pn

∫
Zp
ε

(
x

pn

)
µ

(−tx)k

)
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where ε is as defined in [Col98, Section V.1] and expk denotes the exponential

map for the p-adic representation V (κk) as defined in [BK90].

B.2 Distributions on Z×p

Let µ ∈ Dr(Zp,Ξ⊗ D(V ))ψ, then µ ∈ Dr(Z×p ,Ξ⊗ D(V ))ψ iff∑
ζp=1

Aµ(ζ(1 +X)− 1) = 0

where Aµ is the Amice transform as defined in Remark B.1.5. On the space of

power series satisfying this condition, D = (1+X) d
dX acts bijectively. Moreover,

for such a µ,

DkAµ(ζpn − 1) =
∫

Z×p
ε

(
x

pn

)
xkµ, (B.1)

see e.g. [Col98, Section I.5].

Lemma B.2.1. Any µ ∈ Dr(Z×p ,Ξ⊗ D(V ))ψ can be lifted to

µ̃ ∈ D̃r(Qp,Ξ⊗ D(V ))ϕD⊗ϕ=1,ψ.

Moreover, the image of such a lift under Eh,V is independent of the choice of

the lift.

Proof. [Col98, Lemma IX.2.8 and Remark IX.2.6(iii)] and [Zha04b, Lemma 3.5].

Given any µ ∈ Dr(Z×p ,Ξ⊗ D(V ))ψ, we abuse notation and write Eh,V (µ) =

Eh,V (µ̃) where µ̃ is a lift of µ given by Lemma B.2.1. The fact that ϕD⊗ϕ(µ̃) = µ̃

implies that ∫
pA

f(x)µ̃ = ϕ

(∫
A

f(px)µ̃
)

(B.2)

for any f and A ⊂ Qp. It allows us to compute some special values of µ̃.

Lemma B.2.2.
∫

Zp x
kµ̃ = (1− pkϕ)−1

(
DkAµ(0)

)
.

Proof. Since µ̃ restricted to Z×p equals µ, (B.1) implies that∫
Z×p
xkµ̃ξ =

∫
Z×p
xkµξ = DkAµ(0).

Hence, by applying (B.2) to the decomposition∫
Zp
xkµ̃ =

∫
pZp

xkµ̃+
∫

Z×p
xkµ̃,
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we have ∫
Zp
xkµ̃ = pkϕ

(∫
Zp
xkµ̃

)
+DkAµ(0),

so we are done.

Lemma B.2.3.∫
Zp
ε

(
x

pn

)
xkµ̃ =

n−1∑
i=0

pikϕi
(
DkAµ(ζpn−i − 1)

)
+ pnk(1− pkϕ)−1(DkAµ(0)).

Proof. Since Zp = Z×p ∪ pZ×p ∪ · · · ∪ pn−1Z×p ∪ pnZp, we have∫
Zp
ε

(
x

pn

)
xkµ̃

=
n−1∑
i=0

∫
piZ×p

ε

(
x

pn

)
xkµ+

∫
pnZp

ε

(
x

pn

)
xkµ̃

=
n−1∑
i=0

pikϕi

(∫
Z×p
ε

(
x

pn−i

)
xkµ

)
+ pnkϕn

∫
Zp
xkµ̃

where the last equality follows from repeated applications of (B.2). Hence the

result by (B.1) and Lemma B.2.2.

B.3 Special values of the Perrin-Riou exponen-
tial

With the notation above, we define

η̄(X) = η(X)− 1
p

∑
ζp=1

η(ζ(1 +X)− 1).

It is then clear that ∑
ζp=1

η̄(ζ(1 +X)− 1) = 0.

Moreover, we have:

Lemma B.3.1. We have η̄ ∈ Ξ[[X]]ψ.

Proof. Let σ ∈ GQp and ζ a pth root of unity. By [Zha04b, (1.13)], η ∈ Ξ[[X]]ψ,

so ση(X) = η((1 +X)ψ(σ) − 1). If we replace X by ζσ(1 +X)− 1, we have

σ(η(ζ(1 +X)− 1)) = (ση)(ζσ(1 +X)− 1)

= η((ζσ(1 +X))ψ(σ) − 1)

= η(ζκ(σ)(1 +X)ψ(σ) − 1).
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Hence, on summing over ζp = 1, we have

σ

∑
ζp=1

η(ζ(1 +X)− 1)

 =
∑
ζp=1

σ(η(ζ(1 +X)− 1))

=
∑
ζp=1

η(ζκ(σ)(1 +X)ψ(σ) − 1)

=
∑
ζp=1

η(ζ(1 +X)ψ(σ) − 1) (as κ(σ) ∈ Z×p ).

Hence, we have ∑
ζp=1

η(ζ(1 +X)− 1) ∈ Ξ[[X]]ψ.

But we already know that η(X) ∈ Ξ[[X]]ψ, so we are done.

Let ξ ∈ D(V ), then η̄(X)⊗ξ defines an element µξ ∈ D0(Z×p ,Ξ⊗D(V )) with

η̄(X)⊗ ξ =
∫

Z×p
(1 +X)xµξ.

By Lemma B.3.1 and Remark B.1.5, µξ ∈ D0(Z×p ,Ξ⊗D(V ))ψ. On applying the

Perrin-Riou exponential, we have:

Proposition B.3.2. With the notation above, we have for n ≥ 1 and k ≥ 1−h∫
1+pnZp

(−x)kEh,V (µξ) = (k + h− 1)! expk (γn,k(ξ))

where γn,k(ξ) is defined by

1
pn

(
n−i∑
i=0

D−kη̄ϕ
i−n

(ζpn−i − 1)⊗ ϕi−n(ξk) + (1− ϕ)−1(D−kη̄(0)⊗ ξk)

)

with ξk = ξt−k.

Proof. The result follows from combining Theorem B.1.6 with Lemmas B.2.2,

B.2.3 and the fact that ϕ(t) = pt.

Our assumption on the eigenvalues of ϕ implies that there is an isomorphism

H1(K∞,Dr(Z×p , V ))G∞ ∼= Dr(G∞)⊗H1
Iw(F , V )

µ 7→ (. . . ,
∫

1+pnZp
µ, . . .)

where H1
Iw(F , V ) := lim

←
cor

H1(Kn, V ) and Dr(G∞) = Dr(G∞,Qp) (see e.g. [Col98,

Proposition 2]). Under this identification, we have

Eh,V (µξ) ∈ Dh+r(V )(G∞)⊗H1
Iw(F , V ).
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Write Twk : H1
Iw(F , V ) → H1

Iw(F , V (κk)) for the twist map. Recall that

Twk(µ) = (−tx)−kµ, so Proposition B.3.2 implies that if n ≥ 1, the nth com-

ponent of Twk(Eh,V (µ)) is given by

(k + h− 1)! expk(γn,k(ξ)) (B.3)

where expk = expn,k now denotes the exponential map

Kn ⊗ D(V (κk))→ H1(Kn, V (κk)).

We have suppressed the subscript n for simplicity, as it should not cause confu-

sions.

Recall that G∞ ∼= G1 × Γ where Γ ∼= Zp. We fix a topological generator γ

of Γ, then Dr(G∞) can be identified with the set of power series in γ − 1 over

Qp[G1] which are O(logrp).

We now assume that V is a M -representation of GQp where M is a finite

extension of Qp. Then, as in Section 2.2, we have a pairing

<,>: Dm(G∞)⊗H1
Iw(F , V )× Dn(G∞)⊗H1

Iw(F , V ∗(1))→ Dm+n(G∞)⊗M

for all m,n ∈ R≥0 and we can define the following.

Definition B.3.3. For a fixed ξ ∈ D(V ), we define a map

Lhξ : H1
Iw(F , V ∗(1)) → Dr(V )+h(G∞)

z 7→ < Eh,V (µξ), z > .

The same calculation as that in Section 2.2.1 shows that for n ≥ 1(
Twk Lhξ (z)

)
n

= (h+ k − 1)!
∑
σ∈Gn

[expk(γn,k(ξ)σ), z−k,n]nσ

= (h+ k − 1)![
∑
σ∈Gn

γn,k(ξ)σσ,
∑
σ∈Gn

exp∗k(zσ−k,n)σ−1]n

where z−k,n denotes the image of z under

H1
Iw(F , V ∗(1))→ H1

Iw(F , V ∗(1)(κ−k))→ H1(Kn, V
∗(1)(κ−k))

and Twk acts on Dr(V )+h(G∞) by σ 7→ κ(σ)kσ for σ ∈ G∞.

Let θ be a character on Gn which does not factor through Gn−1. Since

D−kη̄ϕ
i−n

(ζpn−i − 1) ∈ Kn−i by Lemma B.1.3, we have

θ

( ∑
σ∈Gn

γn,k(ξ)σσ

)
=

1
pn

∑
σ∈Gn

D−kη̄ϕ
−n

(ζpn − 1)σθ(σ)⊗ ϕ−n(ξk).
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Hence, as in Section 2.2.1, we have for k ≥ 1− h

1
(h+ k − 1)!

κkθ(Lhξ (z))

=
1
pn

[ ∑
σ∈Gn

D−kη̄ϕ
−n

(ζpn − 1)σθ(σ)⊗ ϕ−n(ξk),
∑
σ∈Gn

exp∗k(zσ−k,n)θ(σ−1)

]
n

.

(B.4)

B.4 Construction of the ±-Coleman maps

From now on, we fix a modular form f as in Section 1.3.5 with ap = 0 and

ε(p) = 1 (the latter is solely for simplicity) such that the eigenvalues of ϕ are

not integral powers of p. Let V = Vf (1). In particular, r(V ) = (k − 1)/2 − 1 .

On taking h = 1 in Theorem B.1.6 and writing Lξ for Lhξ , we have

Im(Lξ) ⊂ D(k−1)/2(G∞)⊗ E ∀ξ ∈ D(V ).

Let u = κ(γ), we modify the ±-logarithms of Pollack to define

log+
p,k =

k−2∏
j=0

∞∏
n=1

Φ2n(u−jγ)
p

,

log−p,k =
k−2∏
j=0

∞∏
n=1

Φ2n−1(u−jγ)
p

.

We can now give a generalisation of Proposition 2.4.2:

Lemma B.4.1. Let ξ+ = ϕ(ω) and ξ− = ω where 0 6= ω ∈ D0(V ), then

log±p,k |Lξ±(z) for all z ∈ H1
Iw(F , V ∗(1)).

Proof. We have ϕ2n(ω) ∈ D0(V (κr)) for all integers n and 0 ≤ r ≤ k − 2.

Therefore, by (B.4), we have

κrθ(Lξ+(z)) = 0 if n is odd,

κrθ(Lξ−(z)) = 0 if n is even

where θ is a character of Gn which does not factor through Gn−1. Hence, the

zeros of log±p,k are also zeros of Lξ±(z), so we are done.

In particular, since Lξ±(z) ∈ D(k−1)/2)(G∞)⊗ E, we have Lξ±(z)/ log±p,k =

O(1). Hence, we have:
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Definition B.4.2. The plus and minus Coleman maps are defined to be

Col± : H1
Iw(K,V ∗(1)) → D0(G∞)⊗ E

z 7→ Lξ±(z)/ log±p,k .

B.5 Kernel

For any positive integer n, we write πn = ηϕ
−n

(ζpn − 1). Then, g(n)(πn) = 0

where g(n) = g ◦ · · · ◦ g︸ ︷︷ ︸
n

. Moreover, g(πn) = πn−1 and Kn = K(πn). We from

now on assume that g is a good lift of Frobenius as explained in Appendix A.

Fix a lattice Tf in Vf which is stable under GQ. Write

T = Tf (1) ⊂ V = Vf (1).

To describe the kernel of Col±, we assume p ≥ k − 1. In this setting, all the

results in Section 3.1 carry through.

Let z ∈ H1
Iw(K,T ∗(1)). By Proposition 3.3.1, z ∈ ker(Col±) iff there exists

0 ≤ m ≤ k − 2, such that z−m,n is in the annihilator of the E-vector space

generated by {expm(γn,m(ξ±)σ) : σ ∈ Gn} for all n > 0. We take m = 0 below.

Proposition B.5.1. The vector subspace over E of H1
f (Kn, V (κ)) generated by

the set {exp(γn,0(ξ±)σ) : σ ∈ Gn}, is equal to

{
x ∈ H1

f (Kn, V ) : corn/m+1x ∈ H1
f (Km, V )∀m ∈ S±n

}
.

Proof. Recall that by the proof of Lemma B.1.3, we have σg(ζ−1) = g(ζκ(σ)−1)

for any g ∈ Ξ[[X]]ψ, σ ∈ GQp and ζ a p power root of unity. Therefore, for n > 1∑
ζp=1

g(ζζpn − 1) = Trn/n−1 g(ζpn − 1).

If n = 1, then ∑
ζp=1

g(ζζp − 1) = g(0) + Tr1/0 g(ζp − 1).
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Hence, under the notation of Appendix A, we have

pnγn,0(ξ) =
n−1∑
i=0

η̄ϕ
i−n

(ζpn−i − 1)⊗ ϕi−n(ξ) + η̄(0)⊗ (1− ϕ)−1(ξ)

=
n−1∑
i=0

ηϕi−n(ζpn−i − 1)− 1
p

∑
ζp=1

ηϕ
i−n

(ζζpn−i − 1)

⊗ ϕi−n(ξ)

+

η(0)− 1
p

∑
ζp=1

η(ζ − 1)

⊗ (1− ϕ)−1(ξ)

=
n∑
i=0

(
πn−i −

1
p

Tr(πn−i)
)
⊗ ϕi−n(ξ)− 1

p
Tr(π1)⊗ (1− ϕ)−1(ξ)

=
n∑
i=0

π′n−i ⊗ ϕi−n(ξ)− 1
p− 1

⊗ ξ + (1− ϕ)−1(ξ).

Recall that ϕ2 = −pk−3 on D(V ), so we have

(1− ϕ)−1 =
1

1 + pk−3
(1 + ϕ).

In particular, − 1
p−1 ⊗ ξ

± + (1− ϕ)−1(ξ±) /∈ D0(V ). Moreover, ϕr(ω) ∈ D0(V )

iff r is even, hence {γn,0(ξ±)σ} generatesK +
∑
i∈S±n

K(i)

⊗ E ⊗ D(V )/D0(V )

by Corollary A.1.3. By translating the proof of Lemma 3.2.3, the result follows.

We write H1
f (Kn, V )± for the vector space described in the proposition and

define H1
f (Kn, T )± = H1

f (Kn, T ) ∩H1
f (Kn, V )±. Then,

H1
f (Kn, T )± =

{
x ∈ H1

f (Kn, T ) : corn/m+1x ∈ H1
f (Km, T ))∀m ∈ S±n

}
and ker(Col±) is given by

H1
Iw,±(T ∗(1)) := lim

←
H1
±(Kn, T

∗(1))

where H1
±(Kn, T

∗(1)) is defined to be the annihilator of H1
f (Kn, T )± under the

pairing

H1(Kn, T
∗(1))×H1(Kn, T )→ OF .

Finally, we state a few possible further generalisations which proofs we omit.
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Remark B.5.2. A generalisation of Proposition 3.4.1 can be proved straight-

forwardly.

Remark B.5.3. The images of Col± can be described in the same way as in

Chapter 4.

Remark B.5.4. The Coleman maps can also be extended to relative Lubin-Tate

groups generalising those defined for elliptic curves in [Kim07].

A detailed discussion about relative Lubin-Tate groups can be found in

[Lei09a].

B.6 Selmer groups

We now briefly discuss how the kernels obtained above can be used to define

±-Selmer groups for number fields other than Q.

Let F be a number field with [F : Q] = d. We assume that p splits completely

in F . Let p1, . . . , pd be the primes of F above p and F∞/F a Zp-extension such

that pi is totally ramified in F∞ for all i. We write Fn for the nth layer, i.e. the

pn-subextension.

Note that Fpi is isomorphic to Qp for i = 1, . . . , d. By [IP06, Section 4.2],

F∞,pi/Fpi is contained in a Lubin-Tate extension for some uniformiser π of Qp

such that π ∈ p(1 + pZp). Therefore, we can define Col± for the corresponding

Lubin-Tate extension and they can be restricted to

lim
←
H1(Fn,pi , T

∗(1)),

since we have an isomorphism

H1(Fn,pi , T
∗(1)) ∼= H1(Kn, T

∗(1))G1 ,

which can be proved as in the proof of Lemma 6.2.1. It is then easy to check

that the description of the kernels generalise directly, as discussed in Section 6.4.

For each n ≥ 0, we can define as in [IP06]

Sel±p (f/Fn) = ker

(
Selp(f/F )→

∏
i

H1(Fn,pi , V/T )
H1
f (Fn,pi , T )± ⊗Qp/Zp

)

and Sel±p (f/F∞) = lim
→

Sel±p (f/Fn).
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Unfortunately, unlike the cyclotomic case, Sel±p (f/F∞) is not Λ-cotorsion in

general. However, they do satisfy a control theorem (c.f. [Kob03, Theorem 9.3])

and their coranks can be used to describe those of Selp(f/Fn) (c.f. [IP06,

Proposition 7.1]). Since the proofs for these results given in [IP06, Kob03] are

purely algebraic and do not involve properties of elliptic curves, they generalise

to general f with no difficulties.
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