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Abstract

The aim of this essay is to define the Brauer group of a field. We
will start with the elementary definitions and results needed until we can
define what a Brauer group is. Later, we will give some examples and
more results will be proved when necessary.

1 Tensor Product

The group operation of a Brauer group is tensor product. Here, the definition of
a tensor product is given and some of its properties are shown. Unless otherwise
stated, all modules are left-modules.

Definition 1.1 Let M and N be R-modules where R is a commutative ring.
Let T denote the free R-module generated by elements of M ×N . Let V be the
submodule of T generated by all elements of the form:

(m + m′, n)− (m,n)− (m′, n)

(m,n + n′)− (m,n)− (m,n′)

(rm, n)− r(m,n)

(m, rn)− r(m,n)

Then the tensor product of M and N (over R), denoted by M⊗RN , is defined
to be the quotient module T/V .

Theorem 1.2 (Universal Property of Tensor Product) Let M , N and P
be modules over a commutative ring R. There exists a R-bilinear map (R-linear
in both coordinates) i : M × N → M ⊗R N s.t. given any R-bilinear map
f : M × N → P , there exists a unique R-linear map f ′ : M ⊗R N → P with
f = f ′i.

Proof: Denote the image of (m,n) under the natural homomorphism from T
to T/V by m⊗n. Define i : M ×N → M ⊗R N by i(m,n) = m⊗n. Bilinearity
of i follows from the definition of V .
Now, given f : M ×N → P , we may extend it to a homomorphism f̃ : T → P
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because M×N forms a free basis of T . Since f is R-bilinear, f̃(V ) = 0. So, V ⊆
ker(f̃). By factor theorem, there is a homomorphism (R-linear ⇔ homomor-
phism of R-modules) f ′ : T/V → P s.t. f ′(m⊗ n) = f̃(m,n) = f(m,n) ∀ m ∈
M, n ∈ N . Also, this uniquely determines f ′. But f ′(m ⊗ n) = f ′(i(m,n)),
hence f ′i = f . 2

Theorem 1.2 is very important and will be used over and over again in this
section. It proves the next two propositions. The first one shows that a Brauer
group is abelian and the second one proves the associativity of a Brauer group.
From now on, we simply write M ⊗ N for M ⊗R N when R is clear from the
context.

Proposition 1.3 M ⊗N ∼= N ⊗M

Proof: Define f : M ×N → N ⊗M by f(m,n) = n⊗m. It is clear that f is
R-bilinear. Hence, by theorem 1.2, there exists a homomorphism f ′ : M ⊗N →
N ⊗M s.t. f ′(m ⊗ n) = n ⊗m. By symmetry, there exists a homomorphism
g′ : N ⊗M → M ⊗N with g′(n⊗m) = m⊗n. Therefore, f ′ and g′ are inverse
of each other, hence are isomorphisms. 2

Proposition 1.4 (M ⊗N)⊗ P ∼= M ⊗ (N ⊗ P )

Proof: Define f : M×N×P → (M⊗N)⊗P by f(m,n, p) = (m⊗n)⊗p. Now,
apply theorem 1.2 for fixed m, we have a R-bilinear map f ′ : M × (N ⊗ P ) →
(M ⊗ N) ⊗ P with f ′(m, (n ⊗ p)) = (m ⊗ n) ⊗ p. Apply theorem 1.2 to
f ′, we have a homomorphism f ′′ : M ⊗ (N ⊗ P ) → (M ⊗ N) ⊗ P with
f ′′(m ⊗ (n ⊗ p)) = (m ⊗ n) ⊗ p. As in the last proof, we can find the in-
verse of f ′′, hence the result. 2

We will now introduce a new algebraic structure, algebra. It will play an im-
portant role when we define the elements of Brauer groups.

Definition 1.5 Let R be a commutative ring. A is an R-algebra if it is a ring
as well as a R-module s.t. the ring and module multiplications are compatible,
that is

r(ab) = (ra)b = a(rb) ∀r ∈ R, a, b ∈ A

The centre of A, denoted by Z(A), is defined to be {a ∈ A : ab = ba ∀b ∈ A}.
A is said to be central if Z(A) = R.

Definition 1.6 Let A and B be R-algebras. A map f : A → B is an R-
algebra homomorphism if f is a homomorphism of R-modules as well as a
ring homomorphism.

Using tensor product, we can construct new algebras from old ones as shown
by the following proposition.

Proposition 1.7 If A and B are algebras over the commutative ring R, then
A⊗B is also an R-algebra.

2



Proof: Consider a map from A × B × A × B to A ⊗ B with (a, b, a′, b′) 7→
aa′ ⊗ bb′. It is R-linear in each coordinate, hence, there is a homomorphism
f : A⊗B ⊗A⊗B → A⊗B with f(a⊗ b⊗ a′ ⊗ b′) = aa′ ⊗ bb′ by theorem 1.2.
Now, let g : (A⊗B)× (A⊗B) → A⊗B ⊗A⊗B with g(u, v) = u⊗ v. Then g
is R-bilinear. So, fg is a R-bilinear map with fg(a⊗ b, a′ ⊗ b′) = aa′ ⊗ bb′ and
this defines our multiplication with identity 1 ⊗ 1. It can be checked routinely
that the distributive law holds.
For compatibility, note that r[(a ⊗ b)(a′ ⊗ b′)] = r(aa′ ⊗ bb′) = raa′ ⊗ bb′,
[r(a ⊗ b)](a′ ⊗ b′) = (ra ⊗ b)(a′ ⊗ b) = raa′ ⊗ bb′ and (a ⊗ b)[r(a′ ⊗ b′)] =
(a ⊗ b)(ra′ ⊗ b′) = ara′ ⊗ bb′ = raa′ ⊗ bb′. Therefore, the two multiplications
are compatible. 2

We will now prove a couple of results on tensor product of algebras which will
be used in later sections.

Lemma 1.8 Given a field k and finite-dimensional k-algebras A and B, let
{ai} and {bj} be bases for A and B over k respectively. Then {ai ⊗ bj} is a
basis for A⊗B. In particular, dim(A⊗B) = dim(A) dim(B).

Proof: By definition, elements of A ⊗ B are linear combinations of elements
of the form (

∑
riai) ⊗ (

∑
sjbj) =

∑
risj(ai ⊗ bj). Hence {ai ⊗ bj} forms

a generating set for A ⊗ B. For linear independence, we construct a linear
functional L : A⊗B → k. Let {αi} and {βj} be the dual bases to {ai} and {bj}
respectively. For given i and j, define f : A × B → k by f(a, b) = αi(a)βj(b)
which is clearly k-bilinear. By theorem 1.2, we have a linear functional L s.t.
L(a ⊗ b) = αi(a)βj(b). Therefore, L(ai ⊗ bj) = 1 and L vanishes on all other
ak ⊗ bl. Hence the linear independence. 2

Proposition 1.9 Given a field k and k-algebras A and B, we have
1. A⊗B contains A and B as commuting subalgebras.
2. Any basis {bi} of B over k is a basis for A⊗B as an A-module.
3. Any basis {ai} of A over k is a basis for A⊗B as an B-module.

Proof: Define k-algebra homomorphisms f : A → A⊗B and g : B → A⊗B with
f(a) = a⊗1 and g(b) = 1⊗b. Let {bj} be a basis for B over k. Then, by lemma
1.8, for any x ∈ A⊗B, x has a unique expression x =

∑
rij(ai⊗bj) =

∑
a′j⊗bj

where a′j =
∑

rijai. So, we have x =
∑

a′j ⊗ bj =
∑

(a′j ⊗ 1)(1 ⊗ bj) =∑
f(a′j)g(bj). Since the expression is unique, {g(bj)} forms a free basis for

A ⊗ B when treated as an A-module. Now, ker(f) annihilates A ⊗ B, but
only 0 annihilates a free module, so ker(f) = {0}. Therefore, f is injective.
Hence, we may identify A as a subalgebra of A ⊗ B. Now, reversing the roles
of A and B, we see that the same is true for B. A and B commute since
(a⊗ 1)(1⊗ b) = a⊗ b = (1⊗ b)(a⊗ 1). 2

2 Simplicity

The elements of a Brauer group of a field, say k, are equivalence classes of k-
algebras with certain properties. We will show how to define the equivalence
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relation in this section. First, we give some important definitions. They are not
only important for results in this section, but also will be vital for our definition
of Brauer Groups.

Definition 2.1 A nonzero module M is simple if it contains no proper nonzero
submodule.

Definition 2.2 A ring R is simple if it has no non-trivial two-sided ideals.
An algebra A is simple if it is simple as a ring.

Definition 2.3 A ring R is a division ring if ∀r ∈ R \ {0}∃s ∈ R s.t. rs =
sr = 1, ie all elements of R are invertible. A division algebra is an algebra
which ring structure gives a division ring.

Note that a field is just a commutative division ring. A lot of results for vector
spaces are also true for modules over a division ring because we don’t need
commutativity when we prove them. The following is quoted without proof.

Proposition 2.4 Any D-module is a direct sum of copies of D where D is a
division ring. In particular, we can define the dimension of a D-module, as for
vector spaces.

Finally, we give the definition of an opposite algebra which will be the inverse
of an element of a Brauer group.

Definition 2.5 Let R be a ring. The opposite ring of R, denoted by Ropp, is
the ring with the same additive group, but with multiplication defined by r·s = sr.
For an algebra A, the opposite algebra of A, denoted by Aopp, is the algebra
with the corresponding property as a ring.

From now on, unless otherwise stated, all algebras are over a field k of fi-
nite dimension and all tensor products are carried out over k. Note that we
have already seen that A and B are finite-dimensional implies A ⊗ B is finite-
dimensional.

Our ultimate goal of this section is to relate simple algebras to matrix alge-
bras over division algebras. Here, Mn(D) denotes the algebra of n×n matrices
over D. In order to do prove the result desired, we will need a couple of lemmas.

Lemma 2.6 Let A be an k-algebra and M be a simple A-module. Then EndA(M)
is a division algebra over k.

Proof: Let f ∈ EndA(M) \ {0}. Since ker(f) ≤ M , by simplicity, ker(f) = M
or {0}. But f 6= 0, so ker(f) = {0}. Similarly, im(f) ≤ M implies im(f) = M .
Therefore, f is an isomorphism, hence invertible. Therefore, EndA(M) is a
division ring. Note that k acts on M via left multiplication, so EndA(M) is
a k-algebra. Since the action commutes with EndA(M), compatibility follows.
Hence, EndA(M) is a division algebra over k. 2
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Lemma 2.7 With the above notation, let D be the division algebra EndA(M).
Then EndA(Mn) ∼= Mn(D) as k-algebras.

Proof: By a similar argument as above, one may show that EndA(Mn) is a
k-algebra. Now, since D is a k-algebra, if we identify k with kIn where In is
the identity matrix, we see that Mn(D) is a k-algebra as well.
Given f ∈ EndA(Mn), let fij ∈ D be s.t. fij(m) is the ith component of
f(0, ...,m, ..., 0) where m is at the jth component. It is not hard to see that
f 7→ (fij) defines an isomorphism from EndA(Mn) to Mn(D). 2

Theorem 2.8 Let A be a simple algebra, then there exists a faithful simple
A-module M . Moreover, A ∼= Mn as A-modules for some n.

Proof: Let I be a left ideal of A, other than {0}, with the smallest dimension
over k, then I is a simple A-module. Since the annihilator of M is a two-
sided ideal of A, by simplicity of A, ann(M) = A or {0}. But 1 is not in the
annihilator, so it can only be {0}. Hence, M is a faithful simple A-module as
required.
Consider all A-homomorphisms f : A → Mn for various n and choose one with
minimal kernel w.r.t. inclusion (exists by finite-dimension). Assume f is not
injective, then we have f(b) = 0 for some b 6= 0. We have bm 6= 0 for some
m ∈ M by faithfulness. Now, define g : A → Mn ⊕M with g(a) = (f(a), am)
and g has a smaller kernel than f (since ker(g) ⊆ker(f) \ {b}), contradiction.
Hence, f is injective. By isomorphism theorem, A is isomorphic to a submodule
of Mn.
Now, for each copy of M , A ∩ M is a submodule of M . By simplicity of M ,
either A ∩ M = M or {0}. So, inside Mn, A is a direct sum of finitely many
copies of M , hence the result. 2

Lemma 2.9 With the above notations, any simple A-modules are isomorphic
to M .

Proof: We have already seen that A ∼= Mn and a submodule N of A ∼= Mn

is a direct sum of copies of M . Therefore, A/N is also a direct sum of finitely
many copies of M .
Let P be a simple A-module. For p ∈ P with p 6= 0, we have {0} 6= Ap ≤ P .
By simplicity of P , Ap = P . Let f : A → P with f(a) = ap. This is a surjective
homomorphism, hence, P ∼= A/ ker(f) by isomorphism theorem. By the above
remark, P ∼= Mm for some m. But P is simple, we have m = 1 as required. 2

Corrolary 2.10 If A is a simple k-algebra, then A ∼= Mn(D) for some n and
a dvision k-algebra D.

Proof: By theorem 2.8, A ∼= Mn as A-modules for some n. So, EndA(A) ∼=
EndA(Mn). By lemma 2.7, EndA(Mn) ∼= Mn(D) where D = EndA(M) is a
division algebra. Hence, EndA(A) ∼= Mn(D).
Now, we need to simplify EndAA. Let f : A → EndA(A) with f(a)(b) = ba.
So f(ab) = f(b)f(a). Therefore, f is a homomorphism from Aopp to EndAA.
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If f(a) = f(b), then f(a)(1) = f(b)(1), ie a = b. So, f is injective. For
any g ∈ EndAA, we have g = f(g(1)). So f is surjective as well. Therefore,
Aoop ∼= EndAA.
Putting these together, we have Aopp ∼= Mn(D). It is clear that (Aopp)opp ∼= A
and Mn(D)opp ∼= Mn(Dopp) (by looking at transpose). So, we can now conclude
that A ∼= Mn(Dopp) and Dopp is a division k-algebra because D is. 2

The converse is also true. To prove it, we need the following lemma.

Lemma 2.11 Let R be a ring. Then any ideals of Mn(R) are of the form
Mn(I) where I is a two-sided ideal of R.

Proof: Let J be a two-sided ideal of Mn(R) and denote Jij be the set of
(i, j)-entries in J . Note that swapping columns and rows correspond to right
and left multiplications by elmentary matrices respectively. Therefore, for any
1 ≤ i, j, k, l ≤ n, if r ∈ Jij , then r ∈ Jkl as well. Hence, Jij = Jkl. So, we see
that J is of the form Mn(L) for some subset L of R. By adding two matrices of
J , we see that L is an additive subgroup. Multiply a row or a column by r ∈ R
corresponds to left or right multiplication by a matrix in Mn(R). So rL ⊆ L
and Lr ⊆ L. Therefore, L is a two-sided ideal of R. 2

Proposition 2.12 Mn(D) is a simple k-algebra for any divison k-algebra D.

Proof: If I is a two sided ideal of Mn(D), then I = Mn(J) for some two-sided
ideal J of D by lemma 2.11. Since every element of D is invertible, either
J = {0} or D. So either I = {0} or Mn(D). Therefore, Mn(D) is simple.
To see that it is an k-algebra, identify D with DIn in Mn(D) where In is the
identity matrix. Since D is a k-algebra, we can identify k in the same way.
Compatibility follows immediately. 2

Finally, with the following theorem, we can define our equivlance relation.

Theorem 2.13 If Mn(D) ∼= Mm(E) as algebras where D and E are division
algebras, then D ∼= E and n = m.

Proof: Let A = Mn(D), then A is a simple algebra by proposition 2.12. Hence,
there is a unique simple A-module, M , by lemma 2.9. Let I be the left ideal
generated by e11, the matrix with 1 at the (1, 1)-entry and 0 everywhere else.
By considering row operations (ie left multiplication), we see that I consists of
those matrices which have zero entries everywhere but the first column.
Now, given any matrix a 6= 0 in I, using row operation, we can move a nonzero
element to the first row, and eliminate all other nonzero entries if necessary.
Since D is a division ring, multiplying the inverse of the first entry, we get e11.
Therefore, Aa = I. So I has no nonzero proper submodule, ie I is a simple
A-module. We have I ∼= M .
Let f ∈ EndA(I) with a = f(e11). For any i ∈ I, f(i) = f(ie11) = if(e11) =
i(a11In) where a11 is the (1, 1)-entry of a. We see that there is a one-one cor-
respondence between EndA(I) and D with multiplication the other way round.
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Therefore, EndA(I) ∼= Dopp. So, we have D ∼= (EndA(M))opp which is uniquely
determined by A. So D ∼= E. By comparing dimensions, we see that n = m. 2

The highly anticipated equivalence relation is as follows.

Definition 2.14 Let A and B be finite-dimensional simple k-algebras. We say
A and B are similar, denoted by A ∼ B, if there exist m and n s.t. A ∼= Mm(D)
and B ∼= Mn(E) where D and E are isomorphic division algebras.

It is clear that ∼ defines an equivalence relation on finite-dimensional simple
k-algebras by corollary 2.10, theorem 2.13 and the fact that isomorphism is an
equivalence relation.

3 Central Simple Algebras

The aim of this section is to prove the closure of a Brauer group. Our elements
are equivalence classes of central simple algebras and the group operation is
tensor product. So, we need to show that the tensor product of two central
simple algebras is central simple as well.

Lemma 3.1 Let A and B be algebras wtih B central simple. If I is a nonzero
two-sided ideal of A⊗B, then I ∩A 6= {0}.

Proof: Let x ∈ I with x 6= 0. We may write x =
∑l

i=1 ai ⊗ bi with l minimal.
Then, {ai} and {bi} are linearly independent over k. In particular, we have
b1 6= 0. Since B is simple, we have Bb1B = B. Therefore, there exist xj , yj ∈ B
s.t.

∑m
j=1 xjb1yj = 1. Now, let

x′ =
m∑

j=1

(1⊗ xj)x(1⊗ yj)

=
m∑

j=1

l∑
i=1

ai ⊗ xjbiyj

=
l∑

i=1

ai ⊗ (
m∑

j=1

xjbiyj)

=
l∑

i=1

ai ⊗ b′i

where b′i =
∑m

j=1 xjbiyj . In particular, b′1 = 1. I is a two-sided ideal, so
x′ ∈ I. By proposition 1.9, ai linearly independent over k implies that ai

linearly independent over B. As b′1 6= 0, we have x′ 6= 0.
For any b ∈ B, we have (1⊗ b)x′−x′(1⊗ b) =

∑l
i=2 ai⊗ (bb′i− b′ib) since b′1 = 1.

By minimality of l, this element in I has to be 0. By linear independence of ai,
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we have bb′i = b′ib ∀b ∈ B. Therefore, b′i ∈ Z(B) = k ∀i (as B is central). By
compatibility, we may now conclude that

x′ =
l∑

i=1

ai ⊗ b′i

=
l∑

i=1

aib
′
i ⊗ 1

= (
l∑

i=1

aib
′
i)⊗ 1 ∈ A

Therefore, x′ ∈ I ∩A. But x′ 6= 0, so I ∩A 6= {0}. 2

Theorem 3.2 Let A and B be algebras with B central simple. Then, any two-
sided ideal of A⊗B is of the form I ⊗B, where I is a two-sided ideal of A.

Proof: Let J be a two-sided ideal of A ⊗ B and let I = J ∩ A. Clearly, I
is a two-sided ideal of A. Let f be the natural homomorphism from A ⊗ B
to (A/I) ⊗ B. If {xi} is a basis for I, extend it to a basis {xi} ∪ {yj} for A.
Then by results from linear algebra, we see that {yj + I} is a basis for A/I.
Hence

∑
uixi +

∑
vjyj ∈ ker(f) iff vj = 0 ∀j. Therefore, we may conclude

that ker(f) = I ⊗ B. Clearly f is onto. By isomorphism theorem, we have
(A⊗B)/(I ⊗B) ∼= (A/I)⊗B.
If x ∈ I ⊗ B, then x = a ⊗ b for some a ∈ I = J ∩ A and b ∈ B. So
x = (a ⊗ 1)(1 ⊗ b). But a ⊗ 1 ∈ J , x ∈ J as J is a two-sided ideal. Therefore,
I ⊗B ⊆ J .
Assume J contains I ⊗ B properly. Consider the natural homomorphism g :
A⊗B → (A⊗B)/(I⊗B) ∼= (A/I)⊗B. Then g(J) 6= {0} and g(J) is a two-sided
ideal of (A/I)⊗B. By lemma 3.1, g(J) ∩A/I 6= {0}. However, I = J ∩A and
g(J) ∩A/(J ∩A) = {0}, contradiction. Therefore, J = I ⊗B as claimed. 2

Theorem 3.3 Let A and B be algebras with B central, then Z(A⊗B) = Z(A).

Proof: By the identification of A in A⊗B, it is clear that Z(A) ⊆ Z(A⊗B).
Let z =

∑
ai ⊗ bi ∈ Z(A ⊗ B). As in the proof of lemma 3.1, we may assume

that ai are linearly independent over k. For b ∈ B, we have (1⊗ b)z = z(1⊗ b).
Therefore,

∑
ai⊗(bbi−bib) = 0. As in the proof of lemma 3.1, we have the linear

independence of ai over B. So, we can conclude that bbi = bib, ie bi ∈ Z(B) = k.
By compatibility, we have

z =
∑

ai ⊗ bi

=
∑

aibi ⊗ 1

= (
∑

aibi)⊗ 1
= x⊗ 1
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where x =
∑

aibi.
For any a ∈ A, we have (a ⊗ 1)z = z(a ⊗ 1) because z ∈ Z(A ⊗ B). Hence,
(ax − xa) ⊗ 1 = 0. So, ax = xa ∀a ∈ A. Therefore, x ∈ Z(A). But z = x ⊗ 1,
so we can conclude that Z(A⊗B) ⊆ Z(A) and hence Z(A) = Z(A⊗B). 2

Corrolary 3.4 If A and B are central simple algebras, then so is A⊗B.

Proof: Let J be a two-sided ideal of A⊗B, then J = I⊗B for some two-sided
ideal I of A by theorem 3.2. But A is simple, so I = {0} or A. Hence J = {0}
or A ⊗ B. So, A ⊗ B is simple. By theorem 3.3, Z(A ⊗ B) = Z(A). But A is
central, so Z(A⊗B) = k. Therefore, A⊗B is central simple. 2

4 Definition of a Brauer Group

Since our group elements are equivalence classes, we will need to show that the
group operation is well-defined. The following lemma will help us prove it.

Lemma 4.1 For any algebra A, Mn(A) ∼= A⊗Mn(k).

Proof: Let eij be the matrix with 1 at (i, j)-entry and 0 everywhere else. Then
eij form a basis for Mn(k) over k with the rules

eijekl = δjkeil,
∑

eii = 1 (∗)

By proposition 1.9, A⊗Mn(k) is a free A-module with basis eij . By (∗), we see
that A⊗Mn(k) ∼= Mn(A). 2

Corrolary 4.2 For any natural numbers m and n, Mm(k)⊗Mn(k) ∼= Mmn(k).

Proof: By lemma 4.1, we have Mm(k)⊗Mn(k) ∼= Mn(Mm(k)). Each element
of Mn(Mm(k)) can be identified as an element of Mnm(k) and Mn(Mm(k)) ∼=
Mnm(k) by the properties of block multiplication of matrices. 2

Corrolary 4.3 If Mn(D) is a central simple algebra with D a division algebra,
then D is central simple.

Proof: By lemma 4.1, Mn(D) ∼= D ⊗Mn(k). From linear algebra, Z(Mn(k))
is just the set of scalar matrices as k is a field. Hence Z(Mn(k)) = k, ie Mn(k)
is central. By theorem 3.3, Z(D⊗Mn(k)) = Z(D). Since Mn(D) is central, we
have Z(D) = Z(Mn(D)) = k, ie D is central. D is trivially simple because D is
a division ring. 2

Therefore, our equivalence relation, ∼, is really just a classification of central
division k-algebras (trivially simple). Each central division algebra gives rise
to one equivalence class and each equivalence class corresponds to exactly one
central division algebra up to isomorphism. So why do we not consider central
division algebras as our elements? The point is that the tensor product of two
divison algebras may not be a division algebra. So, we consider the equivalence
classes instead.
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Proposition 4.4 If A ∼ A1 and B ∼ B1, then A⊗B ∼ A1 ⊗B1.

Proof: Let A ∼= Mn(D), A1
∼= Mn1(D), B ∼= Mm(E) and A1

∼= Mm1(E) where
D and E are division algebras. Then we have A ⊗ B ∼= Mn(D) ⊗ Mm(E) =
D⊗Mn(k)⊗E⊗Mm(k) by lemma 4.1. By the commutativity of tensor product
and corollary 4.2, we have A⊗B ∼= D⊗E ⊗Mnm(k). Apply lemma 4.1 again,
we have A ⊗ B ∼= Mnm(D ⊗ E). Similarly, A1 ⊗ B1

∼= Mn1m1(D ⊗ E). Hence
A⊗B ∼ A1 ⊗B1. 2

So, our group operation [A] · [B] := [A ⊗ B] is well-defined where [C] denotes
the equivalence class containing C.

Finally, we need the identity and inverse. Lemma 4.1 shows that A ⊗ k ∼=
k⊗A ∼= A (taking n = 1). So, we see that [k] is the identity. It has been stated
that Aopp will be our inverse. So, we need to prove [A][Aopp] = [k]. It suffices
to show that A⊗Aopp = Mn(k) for some n as [k] = [Mn(k)].

Proposition 4.5 Let A be a central simple algebra with dimension n. Then
A⊗Aopp ∼= Mn(k).

Proof: Let V be A regarded as a k-vector space. Let f : A → Endk(V )
and g : Aopp → Endk(V ) with f(a)(v) = av and g(a)(v) = va. Clearly,
f(a)g(b) = g(b)f(a). Hence, the map h : A × Aopp → Endk(V ) with h(a, b) =
f(a)g(b) is k-bilinear. Therefore, by theorem 1.2, there is a homomorphism
i : A ⊗ Aopp → Endk(V ) with i(a ⊗ b) = f(a)g(b). A and Aopp central simple
implies A⊗Aopp central simple by corollary 3.4. By simplicity, ker(i) = {0} or
A⊗Aopp. But i(1) 6= 0, we must have ker(i) = {0}. Therefore, i is injective.
Lemma 1.8 implies that dimk(A ⊗ Aopp) = n2. Since dimk(V ) = n, by results
from linear algebra, we have dimk(Endk(V )) = n2. We may now conclude that
i is surjective. Therefore, we have A⊗Aopp ∼= Endk(V ). Again, by results from
linear algebra, we have Endk(V ) ∼= Mn(k) which implies A⊗Aopp ∼= Mn(k). 2

We are almost there. The last thing we need to prove is that the collection
of equivalence classes defined above actually forms a set.

Proposition 4.6 Given any field k, the collection of equivalence classes of
finite-dimensional central simple k-algebras defined by ∼ forms a set.

Proof: As remarked above, we can consider the collection of finite-dimensional
central division k-algebras (up to isomorphism), C, instead. Let A be a member
of C and let e1, ..., en be a basis for A over k. Then eiej =

∑n
l=1 al

ijel for some
al

ij ∈ k. Also, A is uniquely determinted by such al
ij . For each n > 0, the

collection of (al
ij)1≤i,j,l≤n form a set. So, the union of such collections over n

also forms a set. Hence the result. 2

Finally, here is the definition we have been waiting for.
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Definition 4.7 The Brauer group of a field k, denoted Br(k), is the set of
equivalence classes of finite-dimensional central simple k-algebras under ∼, with
the tensor product as the group operation.

The next theorem is really just a recap of what we have done so far.

Theorem 4.8 Br(k) is an abelian group.

Proof: Proposition 4.6 shows that the collection of our equivalence classes
actually forms a set. Corollary 3.4 shows the closure and proposition 4.4 shows
that the group operation is well-defined. Proposition 1.4 proves the associativity.
Lemma 4.1 gives the existence of the identity [k] (by taking n = 1, we have
A ⊗ k ∼= A). By proposition 4.5, the inverse of [A] is [Aopp]. Therefore, Br(k)
is a group. It is an abelian group by proposition 1.3. 2

5 Examples of Brauer Groups

We will now give some examples. The way we do it will be quite elementary.
Without advanced machinery, it will be easier to work with central division
algebras. If we can find all the finite-dimensional central division algebras,
Br(k) can be then determined.

5.1 Algebraically Closed Fields

We will have to do some field thoery before we proceed.

Definition 5.1 A field k is algebraically closed if every non-constant poly-
nomial f ∈ k[X] has at least one root in k.

Note that C is algebraically closed by Fundamental Theorem of Algebra. If k is
algebraically closed, we can factorise any f ∈ k[X] into linear factors and this
determines all the roots of f . In particular, f has at most deg f roots.

Definition 5.2 If k and K are fields and k is a subfield of K. We say that K
is an extension of k, written K/k. The degree of the extension, denoted by
[K : k], is dimk(K). K/k is algebraic if for any element α of K, there exists
a non-constant f ∈ k[X] s.t. f(α) = 0.

Lemma 5.3 (Tower Law) If we have field extensions k ≤ K ≤ L, then [L :
k] = [L : K][K : k]

Proof: Let {ai} be a basis for L over K and let {bj} be a basis for K over k.
Given v ∈ L, there exists {αi} ⊆ K s.t. v =

∑
αiai. For each αi, there exists

{βij} ⊆ k s.t. αi =
∑

βijbj . So v =
∑

βijbjai. Hence, {bjai} is a generating
set for L over k.
For linear independence, let

∑
γijbjai = 0 with γij ∈ k. Then

∑
(
∑

γijbj)ai =
0. Since

∑
γijbj ∈ K, it has to be 0 by the linear independence of {ai}. Finally,∑

γijbj = 0 implies γij = 0 by the linear independence of {bj}. Therefore, we
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can conclude that {bjai} forms a basis for L over k, hence the result. 2

Note that we haven’t used the commutativity of fields, so the same holds for
modules over division rings.

Definition 5.4 K is an algebraic closure of k if K/k is algebraic and K is
algebraiclly closed.

The next result from field theory will be quoted without proof.

Theorem 5.5 For any field k, there is a unique algebraic closure up to isomor-
phism.

We now return to our investigation of central division algebras.

Proposition 5.6 Let k be an algebraically closed field. If D is a finite dimen-
sional division k-algebra, then k = D.

Proof: It is clear that k ⊆ D. Let n = dimk(D) and x ∈ D. Then 1, x, x2, ..., xn

are linearly dependent. There exist a0, a1, ..., an not all 0 s.t. a0 + a1x + a2x
2 +

... + anxn = 0. Therefore, there exists a non-constant f ∈ k[X] s.t. f(x) = 0.
But k is algebraically closed, so x ∈ k. Hence D ⊆ k and we can conclude that
k = D. 2

Corrolary 5.7 If k is algebraically closed, Br(k) is the trivial group.

Proof: By proposition 5.6, the only finite-dimensional division k-algebra is k.
Hence, there is only one equivalence class in Br(k), namely [k]. Therefore,
Br(k) is the trivial group. 2

In particular, we see that Br(C) is the trivial group because C is algebraically
closed.

5.2 The Skolem-Noether Theorem

Our next goal is to find the Brauer group of a finite field and Br(R). In order to
do that, we will need the Skolem-Noether Theorem and the Centraliser Theorem
which we will prove in this section and the next section respectively. To prove
Skolem-Noether, we will need the next lemma.

Lemma 5.8 Let A be a finite-dimensional simple algebra over k. If M1 and M2

are finitely generated A-modules of the same dimension over k, then M1
∼= M2.

Proof: By theorem 2.8 and lemma 2.9, A ∼= Mn for some unique (up to
isomorphism) simple A-module M . For any finitely generated A-module N ,
N ∼= Am/B for some m and submodule B of Am. But Am is a direct sum
of copies of M , so the same must hold for B as M is simple. Therefore, N is
just a direct sum of copies of M . So, we have M1

∼= M l1 and M2
∼= M l2 for

some l1 and l2. Therefore, we have dimk(Mi) = li dimk(M) for i = 1, 2. But
dimk(M1) = dimk(M2), so l1 = l2. Hence M1

∼= M2. 2
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Definition 5.9 An automorphism α is inner if it is of the form α(x) = zxz−1

for a fixed element z. In this case, we will write αz for α.

Theorem 5.10 (Skolem-Noether) Let A be a simple k-algebra and let B be
a finite-dimensional central simple k-algebra. If f, g : A → B are homomor-
phisms, then there is an inner automorphism α : B → B s.t. αf = g.

Proof: By corollary 2.10, B ∼= Mn(D), some division k-algebra D. By lemma
2.7, EndD(Dn) ∼= Mn(EndDD) because D is a simple D-algebra. As we have
seen in the proof of corollary 2.10, EndC(C) ∼= Copp for any division algebra C.
So EndC(Cn) ∼= Mn(Copp). Let C = Dopp, we have B ∼= Mn(D) ∼= EndE(En)
where E = Dopp is a division k-algebra. By corollary 4.3, Z(B) = Z(D) =
Z(E) = k.
Now, note that f and g define actions of A on En via a ·f v := f(a)(v) and
a ·g v := g(a)(v) respectively as f(a), g(a) ∈ EndE(En). So, we have two
A-module structure on En, say Mf and Mg. It is clear that they have the
same dimension over k. So, by lemma 5.8, they are isomorphic. Hence, there
is an isomorphism from Mf to Mg. That is, h(a ·f v) = a ·g h(v) ∀v ∈ En for
some h ∈ B. Therefore, we have h(f(a)v) = g(a)h(v). So, hf(a) = g(a)h or
hf(a)h−1 = g(a), ie αhf = g. 2

5.3 The Centraliser Theorem

We need to introduce the concept of centraliser so that we can prove Wedder-
burn’s Theorem and Frobenius’ Theorem which will give us the Brauer group
of a finite field and Br(R) respectively in the end.

Definition 5.11 If A is an algebra and B is any subset of A, the centraliser
of B in A is defined to be C(B) = {a ∈ A : ab = ba ∀b ∈ B}.

It is easy to check that C(B) is a subalgebra of A. We will now prove the
centraliser theorem.

Theorem 5.12 (Centraliser Theorem) Let A be a simple subalgebra of B
where B is a finite dimensional central simple k-algebra. Let D1 and D2 be
division algebras. Then
1. C(A) is simple.
2. If B ∼ D1 and A⊗Dopp

1 ∼ D2, then C(A) ∼ Dopp
2 .

3. [B : k] = [A : k][C(A) : k].
4. C(C(A)) = A.

Proof: As in the proof of theorem 5.10, B ∼= EndD(Dn) ∼= Mn(Dopp) for some
division algebra D with centre k. Also, A, as an subalgebra of B, acts on Dn,
hence Dn is an A⊗D-module. By the definition of endomorphism, we see that
C(A) = EndA⊗D(Dn).
1. D is central simple, so A ⊗ D is simple by theorem 3.2. There exists N ,
the unique simple A ⊗ D-module by lemma 2.9 and E = EndA⊗D(N) is a
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division algebra by lemma 2.6. As we have seen in the proof of lemma 2.9, any
A⊗D-module is of the form Nm. Hence, Dn ∼= Nm for some m. Hence,

C(A) = EndA⊗D(Nm)
∼= Mm(EndA⊗D(N)) by lemma 2.7
∼= Mm(E)

Mn(E) is simple by proposition 2.12, ie C(A) is simple.
2. B ∼= Mn(Dopp), so D1

∼= Dopp. Since (Dopp)opp ∼= D, we have D2 ∼
A⊗Dopp

1
∼= A⊗D. Since E is the unique simple A⊗D-module, A⊗D ∼ Eopp

as we have seen in corollary 2.10. So, Eopp ∼= D2. But C(A) ∼= Mn(E), so
C(A) ∼ E ∼= Dopp

2 as required.
3. C(A) ∼= Mm(E), so by the tower law, [C(A) : k] = [Mm(E) : E][E : k] =
m2[E : k]. Also, Dn ∼= Nm, we have [Dn : k] = [Dn : N ][N : k] = m[N : k] =
m[N : E][E : k]. Cancelling m, we have

[C(A) : k] =
( [Dn : k]

[N : E][E : k]

)2

[E : k]

=
[Dn : k]2

[N : E]2[E : k]

=
[Dn : k]2

[EndE(N) : E][E : k]
as E is a division algebra

=
[Dn : k]2

[EndE(N) : k]

=
[Dn : k]2

[A⊗D : k]

=
[Dn : k]2

[A : k][D : k]
by lemma 1.8

So, simplifying the above equation, we have

[A : k][C(A) : k] =
[Dn : k]2

[D : k]

=
([Dn : D][D : k])2

[D : k]
= n2[D : k]
= [Mn(D) : k]
= [B : k] as B ∼= Mn(Dopp)

4. It is clear that A ⊆ C(C(A)). Apply part 3 to C(A), we have [B : k] =
[C(A) : k][C(C(A)) : k]. But we also have [B : k] = [A : k][C(A) : k], so
cancelling gives [C(C(A)) : k] = [A : k]. By results from linear algebra, we have
A = C(C(A)). 2
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Corrolary 5.13 If A is a central simple subalgebra of a finite-dimensional cen-
tral simple algebra B, then B ∼= A⊗ C(A).

Proof: As in the proof of proposition 4.5, there is a homomorphism f : A ⊗
C(A) → B with f(a ⊗ a′) = aa′ because A and C(A) commute. A ⊗ C(A) is
simple by lemma 3.1. By simplicity, either ker(f) = {0} or ker(f) = A⊗C(A).
But 1 ⊗ 1 /∈ ker(f), so ker(f) = {0} and f is injective. Therefore, A ⊗ C(A)
is isomorphic to a subalgebra of B. By part 3 of the Centraliser Theorem and
lemma 1.8, we have [B : k] = [A : k][C(A) : k] = [A ⊗ C(A) : k]. Hence,
B ∼= A⊗ C(A). 2

Corrolary 5.14 Let D be a division algebra with centre k and [D : k] = n2. If
K is a maximal subfield of D (w.r.t. inclusion), then [K : k] = n.

Proof: k = Z(D) is a field because it is commutative and is a subalgebra of
a division algebra. By the commutativity of K, K ⊆ C(K). Given a ∈ C(K),
K(a) (the minimal field containing K and a) is a subfield of D and K ⊆ K(a).
By the maximality of K, we have K = K(a). Hence, a ∈ K and we can conclude
that C(K) ⊆ K. Therefore, K = C(K). By part 3 of the Centraliser Theorem,
n2 = [D : k] = [K : k][C(K) : k] = [K : k]2. Hence the result. 2

The above corollary assumes that [D : k] is a perfect square. We will see
that this is always the case.

Lemma 5.15 Let K/k be a field extension and let A be an k-algebra. Then
K ⊗k A is a K-algebra, denoted by AK . Moreover, if {ai} is a basis for A over
k, then it is a basis for AK over K. In particular, [A : k] = [AK : K].

Proof: By proposition 1.9, AK is a K-module with basis {ai}. AK is a ring be-
cause it is an k-algebra by proposition 1.7. Compatibility follows easily because
K is a vector space over k. 2

Theorem 5.16 If D is a finite-dimensional division algebra over its centre k,
then [D : k] is a perfect square.

Proof: Let K be the algebraic closure of k. By lemma 5.15, [D : k] = [DK : K],
so DK is finite-dimensional over K. By lemma 3.2, DK = D⊗k is simple because
D is central simple. Therefore, DK

∼= Mn(E) for some division K-algebra E by
corollary 2.10. K is algebraically closed implies that E = K by proposition 5.6.
So, [D : k] = [DK : K] = [Mn(K) : K] = n2 as claiemd. 2

5.4 Finite Fields

Throughout this section, we assume k is a finite field. We will show that Br(k)
is again the trivial group. To show it, we will need Wedderburn’s Theorem.
First, we give a lemma from group theory.

Lemma 5.17 If H ≤ G are finite groups with H 6= G, then G 6= ∪g∈G(gHg−1).
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Proof: Since [G : NG(H)] is the number of subgroups in G which are conjugate
to H, the number of non-identity elements in ∪g∈G(gHg−1) is

≤ [G : NG(H)](|H| − 1)
≤ [G : H](|H| − 1) since H ⊆ NG(H)

=
|G|
|H|

(|H| − 1)

= |G| − |G|
|H|

< |G| − 1 as H 6= G

Therefore, G 6= ∪g∈G(gHg−1) as required. 2

Theorem 5.18 (Wedderburn) Any finite division ring is commutative.

Proof: Let D be a division ring and let k = Z(D) be a subfield of D. Let
K be a maximal subfield of D containing k, so k ⊆ K ⊆ D. If K = D, then
D is a field, hence commutative. So assume K 6= D. By theorem 5.16 and
corollary 5.14, we have [D : k] = n2 and [K : k] = n for some n. Therefore,
|K| = |k|n. Quoting from field theory, any fields containing k with order |k|n
are isomorphic, hence conjugate by the Skolem-Noether Theorem. So, we have
K ′ = zKz−1 for any maximal subfield K ′.
Note that every element of D is contained in some maximal subfield, we have
D = ∪z∈D(zKz−1). Now, if we take the multiplicative group, we have D∗ =
∪z∈D(zK∗z−1). But this contradicts lemma 5.17. Therefore, the assumption
that K 6= D is false. Hence K = D and D is commutative. 2

Corrolary 5.19 Br(k) is the trivial group.

Proof: Let D be a central division k-algebra. Then D is commutative by
Wedderburn’s Theorem. D is central, so Z(D) = k = D. Therefore, there is
only one element in Br(k), that is [k]. Hence the result. 2

5.5 Br(R)

All our examples so far give the trivial group. We will see that this is not so for
the reals. First, let’s recall what the Quaternions are.

Definition 5.20 The Quaternions, denoted by H, is the four-dimensional vec-
tor space over R with basis {1, i, j, k}, and the multiplication is defined so that
1 is the multiplicative identity and

i2 = j2 = k2 = −1
ij = −ji = k

jk = −kj = i

ki = −ik = j.
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It can be checked routinely that H is an R-algebra. For any q = a+bi+cj+dk ∈
H and q 6= 0 with a, b, c, d ∈ R, it can be verified that (a− bi− cj − dk)/(a2 +
b2 + c2 + d2) is the multiplicative inverse of q. Therefore, H is in fact a division
R-algebra.

Lemma 5.21 The only finite field extensions of R are R and C.

Proof: Let K be a finite extension of R of dimension say n. Given x ∈ K,
1, x, x2, ..., xn are linearly dependent over R. So, there exist a0, a1, ..., an not all
zero s.t. anxn+...+a1x+a0 = 0. Since C is algebraically closed by Fundamental
Theorem of Algebra, x ∈ C. Therefore, K ⊆ C.
If x ∈ R ∀x ∈ K, then K = R. If x ∈ C \ R for some x ∈ K, say x = a + bi
where b 6= 0. i = (x − a)/b ∈ K, hence C ⊆ K. We can then conclude that
C = K. 2

Theorem 5.22 (Frobenius) If D is a division algebra with R in its centre
and [D : R] < ∞, then D = R, C or H.

Proof: Let K be a maximal subfield of D, then [K : R] ≤ [D : R] < ∞. By
lemma 5.21, either K = R or K = C. Assume K = R. Note that R ⊆ Z(D), by
the maximality of K, Z(D) = R and D is central. By corollary 5.14, [D : R] = 1,
hence D = R.
If K = C, either Z(D) = C or Z(D) = R because C is a maximal subfield
containing R and Z(D) is a field containing R. If Z(D) = C, then D is a central
C-algebra because C is contained in D. By corollary 5.14, [D : C] = 1 because
[K : C] = 1. Hence D = C.
Finally, for the case K = C and Z(D) = R, D is central and we can again
apply corollary 5.14 to get [D : R] = [C : R]2 = 4. Let f : C → C with
f(a+ bi) = a− bi where a, b ∈ R. Then f is an R-isomorphism. By the Skolem-
Noether Theorem, there exists x ∈ D with x 6= 0 s.t. x(a + bi)x−1 = a − bi.
Now, apply the conjugation twice, we have x2(a + bi)x−2 = a + bi and hence
x2(a + bi) = (a + bi)x2. So, x2 ∈ C(C) = C. We may apply f to x2 and get
f(x2) = x2. Hence the imaginary part of x2 has to be 0 and x2 ∈ R. It is clear
that x2 < 0 otherwise x ∈ R which is not possible. So there exists y ∈ R\{0} s.t.
x2 = −y2. Let j = x/y and let k = ij. It can be checked that the multiplication
of 1, i, j, k here conincides with that of H. Since [D : R] = 4, we have D = H. 2

Corrolary 5.23 Br(R) ∼= Z2.

Proof: Let D be a finite-dimensional central division R-algebra. D can only
be R, C or H. But C is not central, so D can only be R or H. It is not hard
to check that H is central. So, we see that Br(R) has exactly two elements and
Br(R) ∼= Z2. 2

Note that the identity of the group is [R] and the non-identity element is [H].
So, we have [H] · [H] = [R], ie H⊗H ∼= Mn(R) for some n. The dimension works
out to be 16, hence n = 4. We have H⊗H ∼= M4(R). We can also conclude that
every finite-dimensional central simple algebra over R is isomorphic to a matrix
algebra over R or H.
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Epilogue

We have defined what a Brauer group is and we have seen that it is a classifier
of finite-dimensional central division algebras. This is how we have found our
examples - to find all such algebras. It is not possible to do so for a general
field. The connection of Brauer groups and Galois Theory leads to the compu-
tation of Brauer groups using relative Brauer groups. One can also use theory
of cohomology to show that a Brauer group is torsion.

Brauer groups also have vast application in number theory, algebraic geome-
try, representation theory and algebraic K-theory. In particular, the study of
Brauer groups of algebraic number fields has shown that there is a strong con-
nection between Brauer groups and crossed product algebras. So, what we will
have done here is really just the end of the beginning.
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