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Abstract: Let E/Q be a semistable elliptic curve, and p 6= 2 a prime of bad multiplicative
reduction. For each Lie extension QFT /Q with Galois group G∞ ∼= ZpoZ×p , we construct
p-adic L-functions interpolating Artin twists of the Hasse-Weil L-series of the curve E.
Through the use of congruences, we next prove a formula for the analytic λ-invariant over
the false Tate tower, analogous to Chern-Yang Lee’s results on its algebraic counterpart.
If one assumes the Pontryagin dual of the Selmer group belongs to the MH(G∞)-category,
the leading terms of its associated Akashi series can then be computed, allowing us to
formulate a non-commutative Iwasawa Main Conjecture in the multiplicative setting.

1 Introduction

Fix a prime number p 6= 2, and let ∆ > 1 denote a p-power free integer coprime to p.
For each integer n ≥ 0, we set Kn = Q(µpn) and write Fn = Q(µpn)+ for the maximal
real subfield. We construct a p-adic Lie extension of Q by taking a union of the fields
Ln = Q(µpn ,

pn
√

∆), so that QFT :=
⋃
n≥1 Ln has Galois group

Gal(QFT /Q) ∼=
(

Z×p Zp
0 1

)
C GL2(Zp)

which is a semi-direct product. In terms of a tower diagram for the various field extensions:

ZpoZ×p

QFT

Ln

pn Z/pnZ

Kn

2

(Z/pnZ)×Fn

(pn−pn−1)/2

Q
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It is proved in [12] that G∞ := Gal(QFT /Q) has a unique self-dual representation of
dimension pk − pk−1 for each k ≥ 1, which is of the form

ρk = ρk,Q = IndQ
Kk

(χρk)

for any character χρk : Gal(Lk/Kk) � µpk (e.g. the map sending σ 7→ σ(
pk√

∆)
pk√

∆
will do).

Setting ρ0,Q = 1, then every irreducible representation of Gal(QFT /Q) is isomorphic to
ρk,Q ⊗ ψ for some k ≥ 0, and some finite order character ψ : Gal

(
Q(µp∞)/Q

)
→ C×.

Let E be a semistable elliptic curve defined over the rationals; in particular, it is
modular by the work of Wiles. We denote by fE =

∑∞
n=1 an(E) exp(2πinz) the newform

of weight two and conductor NE associated to E/Q, so NE is square-free as E is semistable.
In this article we shall assume that ∆ is coprime to NE , and throughout impose

Hypothesis(Mult): The elliptic curve E has bad multiplicative reduction at p.

Recall that for an Artin representation ρ over F , one can form the ρ-twisted L-function
L(E, ρ, s) by taking the Euler product

L(E, ρ, s) =
∏
v

det

(
1−NF/Q(v)−sϑv

∣∣∣ (H1
l (E)⊗Ql ρ

)Iv)−1

where ϑv is a geometric Frobenius element for v, and Iv the inertia group; this product
converges to an analytic function on Re(s) > 3/2. We write Ω±E for the real/imaginary
periods of a Néron differential associated to a minimal Weierstrass equation for E/Q.

Theorem 1. Let p and P denote the primes of Fn and Kn lying above p respectively,
define U (n) := ker

(
Z×p → (Z/pnZ)×

)
, and write S for the set of places of OFn over ∆.

For every n ≥ 1, there exists a unique element Lp(E, ρn) ∈ Zp[[U (n)]]⊗Q satisfying

ψ
(
Lp(E, ρn)

)
=

εFn(ρn ⊗ ψ)p
ap(E)f(ρn⊗ψ,p)

×
(
1− ap(E)χρn(P)ψ−1(p)

)
× LS(E, ρn ⊗ ψ−1, 1)

(Ω+
E Ω−E)φ(pn)/2

at all finite characters ψ of U (n).

Here εFn(ρn ⊗ ψ)p denotes the local ε-factor at p. The ε-factor depends on the choice of
a local Haar measure and an additive character at p (see [24] for details). We choose the
Haar measure dx which gives Zp measure 1, and the additive character τ : (Qp,+) −→ C×
given by τ(ap−m) = exp(2πia/pm) with a ∈ Zp (these are the choices used in [4]).

Analogous p-adic L-functions were constructed in [2, 7] for the good ordinary case,
and we shall show that similar congruences to op. cit. hold in our setting, under the
following condition.

Hypothesis(µ = 0): The analytic µ-invariant of Lp(E, ρn) equals zero at each n ≥ 0.

In particular the above condition immediately implies integrality of the ρn-twisted p-adic
L-functions for E, and allows us to jettison some of the tedious technical assumptions
made in [7, 8].
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We now choose an = Lp(E, ρn) for n ≥ 1, and take a0 ∈ Zp[[U (0)]] ⊗ Q to be the
Mazur-Tate-Teitelbaum p-adic L-function from [17], which exhibits p − 1 branches in
Zp[[T ]]⊗Q. For integers j > i ≥ 0, let Ni,j : Zp[[U (i)]]→ Zp[[U (j)]] denote the norm map,
and φ : Zp[[Z×p ]] → Zp[[Z×p ]] be the ring homomorphism induced by the p-power map on

Z×p . In particular N0,1(a0) is the product
∏p−2
j=0 Lp(E,ω

j
p), where ωp is the Teichmüller

character modulo p.

Theorem 2. Under the Hypothesis(µ = 0), for n ≥ 1 there are “first layer” congruences

an ≡ N0,n(a0) mod pZp[[U (n)]].

Coates et al [4] conjectured the existence of a non-abelian p-adic L-function when E has
good ordinary reduction at p – we will now give an analogous conjecture in our setting.
Let H = Gal(QFT /Qcyc) ∼= F×p nZp where Qcyc means the cyclotomic Zp-extension of Q.
We denote by S the set{

x ∈ Zp[[G∞]] : Zp[[G∞]]/Zp[[G∞]]x is a finitely generated Zp[[H]]-module
}

and write Zp[[G∞]]S∗ for the localisation of Zp[[G∞]] at its p-saturation S∗ =
⋃
n≥0 p

nS.
One predicts there exists a special element

Lanal
p (E/QFT ) ∈ K1

(
Zp[[G∞]]S∗

)
whose evaluation at Artin representations ρ : GQ � G∞ → GL(V ) essentially yield the
ρ-twisted L-values L(E, ρ, 1), up to some simple p-adic interpolation factors.

In [15] Kato reduced the question of existence for Lanal
p into a sequence of congruence

relations, amongst the abelian p-adic L-functions {an}n≥0 interpolating E over the false
Tate curve extension. More precisely, he constructed a theta-mapping

ΘG∞,S∗ : K1

(
Zp[[G∞]]S∗

) ∏
(ρn)∗−→

∏
n≥0

Quot
(
Zp[[U (n)]]

)×
and determined the image of ΘG∞,S∗ entirely through the use of p-power congruences.
Using the same arguments in [7, §3.3], we deduce from Theorem 2 the following

Corollary 3. Under the same Hypothesis(µ = 0), the non-abelian congruences

∏
1≤i≤n

Ni,n

(
ai

N0,i(a0)
.
φ ◦N0,i−1(a0)

φ(ai−1)

)pi
≡ 1 mod pn+1Zp[[U (n)]](p) hold for all n ∈ N.

These congruences are necessary conditions to imply existence of Lanal
p (E/QFT ). If the

congruences could be strengthened from pn+1 to p2n, then these stronger versions would
also be sufficient to fully establish existence, using [15, Example 8.12].

Remarks: (a) Theorem 1 allows us to define p-adic L-functions for a number field F ⊂ QFT
by taking the product

Lp(E/F, T ) :=
∏
ρ

Lp(E, ρ, T )

over irreducible sub-representations of IndQ
F 1, counted with multiplicity. We regard the

p-adic L-functions above as elements of Zp[[U (1)]] ∼= Zp[[T ]] via the inclusion U (n) ↪→ U (1).
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(b) For example if F/Q is Galois, we have

Lp(E/F, T ) =
∏

ρ∈Irr(Gal(F/Q))

Lp(E, ρ, T )deg(ρ). (1)

(c) If F = Q( pn
√

∆) for some n ≥ 1, it is proved in [12, §5.2] that IndQ
F 1 ∼= 1 ⊕

⊕n
j=1 ρj

hence one obtains

Lp
(
E/F, T

)
= Lp(E,ω

0
p, T )×

n∏
j=1

Lp(E, ρj , T ).

Let us define a non-negative integer δ := ordp
(
∆p−1− 1

)
− 1, depending only on p and ∆.

Theorem 4. If E has split multiplicative reduction at p, then

(i) Lp(E, ρn) has a trivial zero at T = 0 if and only if n ≤ δ.

(ii) Lp
(
E/Q( pn

√
∆), T

)
has a trivial zero at T = 0 of order ≥ δn, where δn denotes

the number of primes in Q( pn
√

∆) lying above p.

However if E has non-split multiplicative reduction at p, there are no trivial zeros.

In the case n ≤ δ, a trivial zero formula computing the value of L′p(E, ρn) at T = 0 should
be possible if one employs a deformation theory argument along the lines of [13, 9, 10].
Given a number field F ⊂ QFT , consider the integer

r†F (E) := orderT=0

(
Lp(E/F, T )

)
−#

{
places ν of F over p

}
× 1 + ap(E)

2
.

The term at the end is zero unless E has split multiplicative reduction at p, in which case
we need to offset the order of vanishing by each trivial zero contribution.

Conjecture 5. (BSDp) r†F (E) = dimQ
(
E(F )⊗Q

)
.

For instance, assuming that the p-adic Birch and Swinnerton-Dyer Conjecture above holds
over F , the quantity r†F (E) should correspond precisely to the Mordell-Weil rank of E(F ).
In the following discussion, let λan

F (E) be the number of zeros (counted with multiplicity)
of the function Lp(E/F, T ) on the open p-adic unit disk.

Theorem 6. (i) Under our Hypothesis(µ = 0), for all integers n ≥ 1

r†Ln(E) ≤ pn × λan
Q(µp)(E) −

(
1 + ap(E)

2

)
× pmin(δ,n).

(ii) Moreover for the non-Galois extensions F = Q( pn
√

∆), there are similar bounds

r†
Q(

pn√
∆)

(E) ≤
(
pn − 1

p− 1

)
× λan

Q(µp)(E) −
(

1 + ap(E)

2

)
× δn + λan

Q (E).
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Chern-Yang Lee has derived inequalities analogous to those above, with the quantities
r†Ln(E) and r†

Q(
pn√

∆)
(E) replaced by the associated Selmer ranks over the number fields.

In particular if δ = 0 and the generic parity is odd, it is shown in [16, Theorem 1.11] that

corankZpSelp∞(E/Ln) ≥ pn − 1 + corankZpSelp∞
(
E/Q(µp)

)
while for the non-Galois extensions,

corankZpSelp∞
(
E
/
Q(

pn
√

∆)
)
≥ n+ corankZpSelp∞(E/Q).

Note that Lee obtains lower bounds rather than upper bounds, as he is directly inputting
parity information derived from a root number formula of V. Dokchitser [12, Theorem 1].
Both Lee’s inequalities and our algebraic results below are dependent on various hypotheses
concerning the structure of the Selmer group over QFT , which we now describe.

Let M = Homcts

(
Selp∞(E/QFT ),Q/Z

)
denote the Pontryagin dual of the p∞-Selmer

group for E over the false Tate extension, and recallH was the Galois group Gal(QFT /Qcyc).
We assume throughout that M belongs to the category MH(G∞), so that M/Mp∞ is of
finite-type over Zp[[H]]. Since G∞ has no p-torsion, there is a surjective connecting map

∂G∞ : K1(Zp[[G∞]]S∗)→ K0 (MH(G∞))

and write ξM for a (characteristic) element in K1(Zp[[G∞]]S∗) satisfying ∂G∞(ξM ) = [M ].

Notations: (i) For integers n ≥ m ≥ 0 we set Ln,m := Q(µpn ,
pm
√

∆), and denote by regn,m
the regular representation of Gal(Ln,m/Q). One can then define

sn,m(E) := corankZpSelp∞(E/Ln,m) + pmin(δ,m) × 1 + ap(E)

2

which is the p∞-Selmer corank for E over Ln,m, increased by the trivial zero contribution
(indeed we shall show later in Section 3 that the quantity pmin(δ,m) coincides with the
number of places ν of Ln,m lying over p).

(ii) Under the assumption that M belongs to the category MH(G∞) the Pontryagin dual
of Selp∞(E/L∞,m) is a cotorsion Zp[[U (n)]]-module, in which case one may define the

algebraic λ-invariant λalg
Ln,m

(E) to be the λZp[[U(n)]]-invariant of Selp∞(E/L∞,m)∧.

(iii) Lastly for an Artin representation ρ factoring through G∞, we will henceforth write

Φ′ρ : K1

(
Zp[[G∞]]S∗

)
→ Quot

(
Zp[[U (1)]]

)×
for the ‘evaluation-at-ρ map’ in [4, Eqn (22)].

Theorem 7. (a) There are inequalities sn,m(E) ≤ orderT=0

(
Φ′regn,m

(ξM )
)
≤ λalg

Ln,m
(E).

(b) If Selp∞(E/L∞,m)∧ has a semi-simple Λ-structure, one has a higher derivative formula

1

sn,m(E)!
·

dsn,m(E)Φ′regn,m
(ξM )

dT sn,m(E)
≡ `p(E) × #III(E/Ln,m)p∞ × det

(
〈−,−〉Ln,m

)
×
(
pnp

min(δ,m)) 1+ap(E)

2 ×
∏
ν|∆

Lν(E, 1) ×
∏
ν-∞

Tamν(E/Ln,m) × #E(Ln,m)−2
tors

up to a p-adic unit, where the `-invariant `p(E) :=

{∏
ν|p

logp(qE,ν)

ordν(qE,ν) if ap(E) = +1

1 if ap(E) = −1.
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Applying the main theorem of [1], the `-invariant term is non-zero as the Tate period qE,ν
associated to a rigid analytic parametrization for E at each ν | p of Ln,m is transcendental.
In fact the order of vanishing in 7(b) above will become equal to sn,m(E), if and only if
(i) the p-primary part of the Tate-Shafarevich group III(E/Ln,m) for E over Ln,m is finite,
and (ii) the p-adic height pairing 〈−,−〉Ln,m : E(Ln,m) × E(Ln,m) → Qp constructed by
Schneider and Jones [19, 20, 14] is a non-degenerate form.

Conjecture 8. sn,m(E) = orderT=0

(
Φ′regn,m

(ξM )
)
.

We have at least one small fragment of evidence in support of this prediction.

Theorem 9. If Selp∞(E/Ln,m) is finite, then Conjecture 8 holds true.

In Section 3.3 we shall formulate a ‘Main Conjecture’ linking the characteristic element
ξM with the abelian p-adic L-functions constructed in Theorem 1. In the non-split case
the conjecture is straightforward to state. However in the split case ap(E) = +1 not
only do we encounter extra powers of T caused by the exceptional zero condition, but
also dual factors Dp(ρ, T ) occurring at those same Artin representations ρ which produce
exceptional zeros in Lp(E, ρ) (note the Dp-factors themselves are non-vanishing at T = 0).

A Numerical Example. Consider the elliptic curve E15a1 given by the Weierstrass equation
E : y2 + xy + y = x3 + x2 − 10x − 10, with non-split multiplicative reduction at p = 3.
Choosing ∆ = 2 then δ = ord3(22 − 1) − 1 = 0, while K1 = Q(µ3) and L1 = Q(µ3,

3
√

2).
Evaluating L(E, ρ1, s) at s = 1 yields

L(E, ρ1, 1) ≈ 1.72104398080992

and then using in-built MAGMA functions, one calculates that

L∗(E, ρ1) :=

∣∣∣∣∣L(E, ρ1, 1)
√

discK1

(2Ω+
EΩ−E)(3−1)/2

∣∣∣∣∣ ≈ 4.00000000000001.

Note that we make the approximation L∗(E, ρ1) ≈ 4 as we do not expect L∗(E, ρ1) to be
divisible by large primes (for the small ∆’s occurring in our computations).

As f(ρ1, 3) = 3 we know a3(E)f(ρ1,3) = −1, and the local L-factor for L(E, ρ1, s) at the
prime 2 is given by P2(E, ρ1, 2

−1) = 1. Using the Dokchitsers’ technique [11, §6.10] for the
local epsilon factors, one finds εF1

(ρ1)3 ≈ −1.04520385168448E − 14 + 5.19615242270663i

in which case εF1
(ρ1)3

/√
discQ( 3√2) ≈

i
2 . Compiling this information, one obtains

1
(
Lp(E, ρ1)

)
= L∗(E, ρ1)× 2(3−1)/2√

discQ( 3√2)

P2(E, ρ1, 2
−1)

εF1
(ρ1)3

a3(E)f(ρ1,3)
≈ 4 +O(38).

Let us now consider σ = IndQ
K1

(1) ∼= 1 ⊕ ω. Evaluating L(E, σ, s) at s = 1, we compute
that L(E, σ, 1) ≈ 0.322695746401859. Again exploiting the in-built MAGMA functions:

L∗(E, σ) :=

∣∣∣∣∣L(E, σ, 1)
√

discF1

(2Ω+
EΩ−E)

(3−1)
2

∣∣∣∣∣ ≈ 0.125000000000000 =
1

8
.
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Furthermore εF1
(σ)3 ≈ −2.66453525910038E−15+1.73205080756888i and

εF1
(σ)3√

discK1

≈ −1,

whilst P2(E, σ, 2−1) = 2. Lastly since f(σ, 3) = 1, one therefore has a3(E)f(σ,3) = −1.
Putting all of this together, we deduce that

1
(
L3(E, σ)

)
= L∗(E, σ)× P2(E, σ, 2−1)

2(3−1)/2√
discK1

2εF1(σ)3

a3(E)f(σ,3)
≈ 1 +O(38).

As a consequence 1
(
Lp(E, ρ1)

)
= 4 +O(38) ≡ 1 +O(38) = 1

(
L3(E, σ)

)
modulo 3, which

is equivalent to the first layer congruence a1 ≡ N0,1(a0) modulo 3 at the trivial character.

2 The Analytic Side

We begin by recalling some background facts from the theory of Hilbert modular forms.
Let F be a totally real field such that F/Q is abelian. Following the notation from [18],
set h = |Cl†(F )| to be the narrow class number of F , and choose ideles t1, ..., th such that
t̃λ C OF (the ideals generated by the tλ) are all prime to p, and form a complete set of
representatives for Cl†(F ). We also denote the different of F/Q by dF .

Hilbert automorphic forms over F are holomorphic functions f : GL2(AF ) −→ C
satisfying certain automorphy properties (see [18] or [23] for details). They also correspond
to h-tuples (f1, ...fh) of Hilbert modular forms on Hd where d = [F : Q]. If f ∈ Mk(c, ψ)
(the set of Hilbert automorphic forms of parallel weight k, level c and character ψ) then

fλ |k γ = ψ(γ) fλ

for λ = 1, . . . , h and all γ ∈ Γλ(c), with

Γλ(c) =

{(
a b
c d

)
: b ∈ t̃−1

λ d−1
F , c ∈ t̃λc dF , a, d ∈ OF , ad− bc ∈ O×F

}
.

We define

eF (ξz) = exp

2πi
∑

1≤a≤d

ξτaza


where z = (z1, ..., zd) ∈ Hd, ξ ∈ F and τ1, ..., τd are the distinct embeddings F ↪→ R.
Then, each component fλ has a Fourier expansion of the form

fλ(z) =
∑
ξ

aλ(ξ) eF (ξz)

where the sum is taken over all totally positive ξ ∈ t̃λ and ξ = 0. If f is a cusp form, then
aλ(0) = 0 for all λ. The set of cusp forms of parallel weight k, level c and character ψ is
written Sk(c, ψ). The form f itself also has Fourier coefficients C(m, f) which satisfy

C(m, f) =

{
aλ(ξ)NF/Q(t̃λ)−k/2 if the ideal m = ξt̃−1

λ is integral;

0 if m is not integral.

We will employ certain linear operators on the space of Hilbert automorphic forms.
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Definition 10. Let q be an integral ideal of OF , and q an idele for which q̃ = q. We
define the operators q and U(q) on f ∈Mk(c, ψ):

(f |q)(x) = NF/Q(q)−k/2 f

(
x

(
q 0
0 1

))
(f |U(q))(x) = NF/Q(q)k/2−1

∑
v∈OF /q

f

(
x

(
1 v
0 q

))
.

These maps may also be described by their effect on the Fourier coefficients of f , i.e.

C(m, f
∣∣q) = C(mq−1, f) and C(m, f |U(q)) = C(mq, f).

We also use the operator Jc, which is defined by

(f |Jc)(x) = ψ(det(x)−1) f

(
x

(
0 1
c0 0

))
where c0 is an idele with c̃0 = cd2

F . Then f |Jc ∈ Mk(c, ψ−1), and f |J2
c = f if k is even.

This mapping has the additional property

f |Jmc = NF/Q(m)k/2(f
∣∣Jc)∣∣m.

Further, when f is a primitive form in Mk(c, ψ), we have f |Jc = Λ(f) f ι where Λ(f) is a
root of unity, and f ι is the form with Fourier coefficients C(m, f ι) = C(m, f).

Remarks: (i) If fE ∈ Snew
2 (Γ0(NE)) is the newform associated to E/Q, we write fE for the

base change of fE to the totally real field F , with trivial character and conductor c(fE).
Assuming F/Q is abelian, this is the Hilbert modular form whose L-series satisfies

L(s, fE) =
∏
ψ∈Ĝ

L(E,ψ, s) where G = Gal(F/Q).

(ii) For each character χ : Gal(QFT /Fn) → C×, we will write χ† : IFn → C× for the
character of ideals associated to χ via composition with the reciprocity map; specifically
χ† is normalised by χ†(q) = χ(Frobq) for all primes q of Fn, where Frobq denotes an
arithmetic Frobenius element at q.

Let K/F be a totally imaginary quadratic extension. The following is due to Serre [21]:

Theorem 11. If ρ is an Artin representation over F which is induced from the Hecke
character χρ over K, then there exists a Hilbert automorphic form gρ over F such that
gρ ∈ S1(c(gρ), (det ρ)†) and

L(s,gρ) = L(s, ρ).

Further, gρ is primitive if and only if χρ is a primitive character.

It is easily checked that the Fourier coefficients of gρ are

C(m,gρ) =
∑

aCOK,
aā=m

χ†ρ(a).
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Also in the case F = Fk, K = Kk and ρ = ρk, we assumed gcd(∆, NE) = 1 which implies
that p−1c(fE) and c(gρk) are coprime ideals of OFk . The character (det ρ)† satisfies

(det ρ)†(a) = θK/F (a)χ†ρ(aOK)

where θK/F is the quadratic character of K/F , given on prime ideals of OF by

θK/F (q) =


1 if q splits in K/F

−1 if q is inert in K/F

0 if q ramifies in K/F.

(2)

We use a non-standard normalisation [18, Chap 4, §1.4] of the Petersson inner product,

〈F,G〉c :=

h∑
λ=1

∫
Γλ(c)\Hd

Fλ(z)Gλ(z)N(y)kdν(z)

where F ∈ Sk(c, ψ), G ∈Mk(c, ψ), d = [F : Q] and dν(z) =
∏

1≤j≤d y
−2
j dxjdyj .

2.1 Constructing the distribution

Let ρ be a 2-dimensional Artin representation over F factoring through a subgroup of G∞.
For example, ρ might correspond to the representation induced from a Hecke character
over a CM extension of F (e.g. character χρk in the Introduction) with theta-series gρ.
Consider the finite set of primes S = {v : v is a prime of F , v|∆}; we shall study the
value at s = 1 of the normalised Rankin-Selberg product

Ψ(s, fE ,gρ) =

(
Γ(s)

(2π)s

)2[F :Q]

Lc(2s− 1, (det ρ)†)L(s, fE ,gρ)

where c = c(fE)c(gρ), and L(s, fE ,gρ) =
∑

a C(a, fE)C(a,gρ)NF/Q(a)−s.

We need a few preparatory lemmas, starting with a result on the epsilon factor εF (s, ρ).
The Artin L-function L(s, ρ) obeys the functional equation

Γ∞(s) L(s, ρ) = εF (s, ρ) Γ∞(1− s) L(1− s, ρ∨)

where ρ∨ indicates the contragredient representation, and Γ∞(s) := ((2π)−sΓ(s))[F :Q].
The global ε-factor at zero may be decomposed into an infinite product

εF (0, ρ) =
∏

all places v

εFv (ρv, ψν , dxν)

where each local factor depends on the normalisation of additive characters ψν , and Haar
measures dxν (however the product does not).

Lemma 12. Setting εF (ρ) = εF (0, ρ), we have

Λ(gρ) = i−[F :Q]NF/Q
(
c(gρ)d

2
F

)−1/2
εF (ρ).

Proof. This is [7, Lemma 2.2] though there is a typographical error: c should be c(gρ).
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We will use the following integral representation, a special case of [23, Equation (4.32)].

Proposition 13. Let F,G be HMFs such that F is a cusp form and G has character ω.
If the OF -ideal c ⊂ c(F)c(G) then

Ψ(1,F,Gι) = D
1/2
F π−[F :Q] 〈Fι, V (0)〉c

where DF denotes the field discriminant of F/Q, and V (0) := Gι .K0
1(0; c,OF ;ω−1) with

K0
1 the Eisenstein series given in [18, Chapter 4, (4.1)] whose λ-components are

K0
1(0; c,OF ;ω)λ(z) = NF/Q(t̃λ)1/2

∑
c,d

sign(NF/Q(d))ω∗(dOF )NF/Q(cz + d)−1.

Note that the sum is taken over the set of equivalence classes

(c, d) ∈ t̃λdF c×OF
∼

where the relation ∼ is defined by (c, d) ∼ (uc, ud) for all u ∈ O×F .

It is useful to convert K0
1 to an Eisenstein series which has a user-friendly Fourier

expansion; we can do this via the involution Jc. If ω = (det ρ)† then using [18, Chapter 4,
(4.6)],

K0
1(0; c,OF ; (det ρ)†−1)

∣∣Jc =
(4πi)[F :Q]

D
1/2
F NF/Q

(
c(gρ

)
d2
F )1/2

E1(0, c, (det ρ)†−1).

Here E1 is the Eisenstein series in [18, Chapter 4, (4.13)], with λ-components

E1(0, c, ω)λ(z) =
NF/Q(t̃λ)−1/2D

1/2
F

(−4πi)[F :Q]

∑
c,d

sign(NF/Q(c))ω∗(cOF )NF/Q(cz + d)−1

so that ω is viewed an ideal character modulo c, and the sum ranges over

(c, d) ∈
OF × t̃−1

λ d−1
F

∼
.

The Fourier expansion of each λ-component is computed in [18, Chapter 4, Prop 4.2],
namely

E1(0, c, (det ρ)†−1)λ(z) = NF/Q(t̃λ)−1/2
∑

0�ξ∈t̃λ

aλ(ξ)eF (ξz)

with each coefficient
aλ(ξ) =

∑
ξ̃=b̃c̃,
c∈OF ,
b∈t̃λ

(det ρ)†−1(c̃).

For a finite place v of F that is coprime to c(fE), we label roots α(v), α′(v) of the polynomial

X2 − C(v, fE)X +NF/Q(v) = (X − α(v))(X − α′(v));

we also define α(p) = ap(E) and α′(p) = 0. From these definitions, we extend α(m), α′(m)
multiplicatively to all ideals m of OF .
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Definition 14. Set l0 :=
∏

q|∆ q. Then the l0-stabilisation of fE is defined to be

f0 :=
∑
a|l0

M(a)α′(a).fE
∣∣a

where M is the Möbius function on ideals.

Following [18, Chapter 4, (3.14)], define

gρ,pl0 :=
∑
n|pl0

M(n).gρ
∣∣U(n) ◦ n.

In particular, gρ,pl0 ∈M1(c(gρ)p
2l20, (det ρ)†) where c(gρ) was the conductor of gρ.

Set c0 = l0c(fE); we shall choose OF -ideals m′ and l′ such that m′ is a power of p,
supp(l′) = supp(l0) and c(gρ)p

2l20
∣∣m′l′. Clearly f0 ∈ S2(c0) ⊂ S2(c(fE)m′l′), in fact

gρ,pl0 ∈ M1(c(gρ)p
2l20, (det ρ)†) ⊂ M1(c(fE)m′l′, (det ρ)†).

Now the associated contragredient Euler factor is defined by

Eulpl0(ρ∨, s) :=
∏
v|pl0

(1− α′(v)β̂(v)N(v)−s)(1− α′(v)β̂′(v)N(v)−s)

× (1− α−1(v)β(v)N(v)s−1)(1− α−1(v)β′(v)N(v)s−1)

where we have factorised the Hecke polynomial for gρ as

X2 − C(v,gρ)X + (det ρ)†(v) = (X − β(v))(X − β′(v))

and likewise the dual Hecke polynomial via

X2 − C(v,gρ)X + (det ρ)†
−1

(v) = (X − β̂(v))(X − β̂′(v)).

Lemma 15. There is an identity of Rankin-Selberg L-functions

Ψ(s, f0,gρ,pl0
∣∣Jc(fE)m′l′) = NF/Q

(
c(fE)m′l′

c(gρ)

)1/2−s

Λ(gρ) α

(
m′l′

c(gρ)

)
C(c(fE), fE)

× Eulpl0(ρ∨, s) × Ψ(s, fE ,g
ι
ρ).

Because we assumed that E is semistable over Q, the coefficient

C(c(fE), fE) = (−1)#T nsF 6= 0

where T nsF denotes the set of finite places where E has non-split multiplicative reduction.

Proof. Recall that fE |Jmc = NF/Q(m)k/2(fE
∣∣Jc)∣∣m. Since c(gρ,pl0) divides c(gρ)p

2l20, it
follows that

gρ,pl0
∣∣Jc(fE)m′l′ = NF/Q

(
c(fE)m′l′

c(gρ)p2l20

)1/2

.
(
gρ,pl0

∣∣Jc(gρ)p2l20

) ∣∣∣ c(fE)m′l′

c(gρ)p2l20
.
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To avoid cramping our equations, we will write f = fE and h = gρ,pl0
∣∣Jc(gρ)p2l20

so that

Ψ(s, f0,gρ,pl0
∣∣Jc(f)m′l′) = NF/Q

(
c(f)m′l′

c(gρ)p2l20

)1/2

Ψ

(
s, f0,h

∣∣∣∣ c(f)m′l′

c(gρ)p2l20

)
= NF/Q

(
c(f)m′l′

c(gρ)p2l20

)1/2−s

Ψ

(
s, f0

∣∣∣∣U ( c(f)m′l′

c(gρ)p2l20

)
,h

)
= NF/Q

(
c(f)m′l′

c(gρ)p2l20

)1/2−s

α

(
m′l′

c(gρ)p2l20

)
C(c(f), f) Ψ (s, f0,h) .

Here we have exploited the fact that L
(
s, f0,g

ι
ρ|a
)

= NF/Q(a)−s L
(
s, f0|U(a),gιρ

)
for any

ideal a, and also the formula

f0
∣∣U ( c(f)m′l′

c(gρ)p2l20

)
= α

(
m′l′

c(gρ)p2l20

)
C(c(f), f) f0

which follows by construction of the pl0-stabilisation f0. Note C(c(f), f) = ap(E)×C(n, f)
where n is the (square-free) tame conductor of E/F , and moreover

Ψ(s, f0,h) = NF/Q(p2l20)1−2sα(p2l20) Λ(gρ) Eulpl0(ρ∨, s) Ψ(s, f ,gιρ).

Combining the two equations together yields the required result.

We introduce the trace map Trc(fE)m′l′

c0 :M2

(
c(fE)m′l′

)
→M2(c0) by(

H
∣∣Trc(fE)m′l′

c0

)
(x) =

∑
v∈T

H

(
x

(
1 0
c v 1

))

where c is an idele such that c̃ = c0, and T is the coset representatives for c0OF
/
c(fE)m′l′.

This map has the property that for every F ∈ S2(c0),

〈F,H〉c(fE)m′l′ =
〈
F,H

∣∣∣Trc(fE)m′l′

c0

〉
c0
. (3)

Furthermore, from [18, Chapter 4, (4.11)] we have the formula

H
∣∣Trc(fE)m′l′

c0 = H
∣∣Jc(fE)m′l′

∣∣U(m′l′l−1
0

) ∣∣ Jc0 . (4)

The latter arises from the definition of these operators, and the matrix identity(
1 0
c v 1

)
= (cm)−1

(
0 1
cm 0

)(
1 v
0 m

)(
0 1
c 0

)
which holds for any c,m and v. If H = Φ

∣∣Jc(fE)m′l′ , applying Equations (3) and (4) yields

〈f0ι,H〉c(fE)m′l′ =
〈
f0
ι,H

∣∣∣Trc(fE)m′l′

c0

〉
c0

=
〈
f0
ι,Φ
∣∣U(m′l′l−1

0

)∣∣Jc0〉c0 . (5)

The following definition differs slightly from its counterpart in [7] in that the periods we
quotient by are motivic rather than automorphic.
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Definition 16. We define a C-linear functional LF on the complex vector space

M2

(
c(fE)m′l′

)∣∣∣U(m′l′l−1
0

)
by the rule LF : Θ 7−→

〈
f0
ι,Θ
∣∣Jc0〉c0

(Ω+
EΩ−E)[F :Q]

.

Let n ≥ k be integers with n ≥ 1 and k ≥ 0, and put Fn = Q(µpn)+ and Fk = Q(µpk)+

as in the Introduction. We shall consider the Hilbert automorphic form gρk/Fn , i.e. the
base change of gρk to Fn – in a slight abuse of notation, we have elected to write ρk/Fn
as shorthand for the Artin representation ResFn(ρk) = IndFnKn

(
ResKn(χρk)

)
.

Let us denote by Gn the topological group Gal(F ab
n,S/Fn), where F ab

n,S is the maximal
abelian extension of Fn unramified outside S ∪ {p} = {v : v|pl0} and the infinite places.
Fix a multiplicative character ψ : Gn → C× of conductor fψ; as in [7, Definition 2.10] we
introduce the automorphic form over F = Fn:

Φn,kψ = Φn,kψ (ρk/Fn ⊗ ψ, c(fE)m′l′)

:=
(
gρk/Fn⊗ψ,pl0

)
· E1

(
0, c(fE)m′l′,

(
ResFn(det ρk)

)−1 ⊗ ψ−2
)

where we assume m′ and l′ satisfy c(gρ)(pl0fψ)2
∣∣m′l′.

It follows from Proposition 13 and Equation (5) above that

(−4i)[Fn:Q]

NFn/Q
(
c(fE)m′l′d2

F

)1/2 LFn (Φn,kψ
∣∣U(m′l′l−1

0 )
)

=
Ψ(1, f0,gρk/Fn⊗ψ,pl0

∣∣Jc(fE)m′l′)

(Ω+
EΩ−E)[Fn:Q]

.

Combining this with Lemma 15, we obtain the following relationship between Φn,kψ and
the Rankin-Selberg L-function.

Proposition 17. For all integers n ≥ k,

(−4i)φ(pn)/2

α(m′l′)C(c(fE), fE)
LFn

(
Φn,kψ

∣∣U(m′l′l−1
0 )
)

=
NFn/Q(c(gρk/Fn⊗ψ)d2

Fn
)1/2

α(c(gρk/Fn⊗ψ))

× Λ(gρk/Fn⊗ψ) × Eulpl0(ρk/Fn ⊗ ψ−1, 1) ×
Ψ(1, fE ,g

ι
ρk/Fn⊗ψ)

(Ω+
EΩ−E)[Fn:Q]

.

Furthermore, the Fourier coefficients of each λ-component of Φn,kψ are given by

φn,kψ,λ(ξ) =
∑

ξ=ξ1+ξ2

∑
aCOKn,

aā=ξ1 t̃
−1
λ

(χ†ρk ◦NKn/Kk)(a)ψ†(ξ1t̃
−1
λ )

×
∑
ξ̃2=b̃c̃,
c∈OFn ,
b∈t̃λ

((det ρk)† ◦NFn/Fk)−1(c̃)ψ†(c̃)−2.

One defines an algebraic-valued distribution on Gn by∫
Gn
ψ · dµE,ρ :=

(−4i)[Fn:Q]

NFn/Q(dF )α(m′l′)C(c(fE), fE)
LFn

(
Φn,kψ

∣∣U(m′l′l−1
0 )
)

with respect to the finitely additive functions ψ. Note that the above proposition implies
the right-hand side is independent of the choice of ideals m′ and l′.
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Let us now specialise to the situation of the Introduction. Recall our elliptic curve
E was semistable over Fn with bad multiplicative reduction at p, so that α(p) = ap(E)
whilst α′(p) = 0. The Euler factor in the above proposition at the primes dividing l0 can
be shown to equal 1, via the same argument as was outlined in [7, proof of Lemma 3.5].
It follows that

Eulpl0(ρk/Fn ⊗ ψ−1, s) =
(
1− ap(E)β(p)ψ−1(p)ps−1

)(
1− ap(E)β′(p)ψ−1(p)ps−1

)
.

The latter factor always equals 1 unless ψ is the trivial character and ResKn(χρk)(P) = 1
where P is the unique prime of Kn above p, in which case

Eulpl0(ρk/Fn, s) = 1− ap(E)ps−1.

The above term vanishes at s = 1 when ap(E) = +1 (this causes the trivial zero in
Lp(E, ρk/Fn) for small values of k).

Remark: Assume ψ is ramified only at the prime above p. Applying an identical argument
to [7, proof of Theorem 3.2], one obtains the following formula linking the HMF Φn,kψ with
Artin-twists of the Hasse-Weil L-function of E/Fn :

ihFn (−4i)φ(pn)/2

α(m′l′)C(c(fE), fE)
LFn

(
Φn,kψ

∣∣U(m′l′l−1
0 )
)

=
εFn(ρk/Fn ⊗ ψ)

ap(E)f(ρk/Fn⊗ψ,p)
∏
q|∆ α

φ(pn)
q

× Eulpl0(ρk/Fn ⊗ ψ−1, 1) × LS(E, ρk/Fn ⊗ ψ−1, 1)

(Ω+
EΩ−E)[Fn:Q]

(6)

where hFn denoted the narrow class number of Fn.

2.2 Proof of Theorems 1 and 2

We will now prove that after embedding τp : Q ↪→ Qp, we obtain a bounded p-adic measure.

Let ψ be a character of Gn = Gal(F ab
n,S/Fn); we define for integers n ≥ k the integral∫

x∈Gn
ψ(x)dµn,kE,p(x) := τp

(
γn,kE × ihFn (−4i)φ(pn)/2

α(m′l′)C(c(fE), fE)
× LFn

(
Φn,kψ

∣∣U(m′l′l−1
0 )
))

(7)

where γn,kE :=
∏
q|∆ αφ(pn)

q∏
ν 6=p εFn (ρk/Fn)ν

, and the Hilbert modular form

Φn,kψ = Φn,k(ρk/Fn ⊗ ψ, c(fE)m′l′)

= (gρk/Fn⊗ψ)× E1

(
0, c(fE)m′l′, (ResFn det ρk)†−1 ⊗ ψ†−2

)
was as in the previous section.

Proposition 18. (i) The above distribution µn,kE,p yields a p-bounded measure on Gn.

(ii) For characters ψ on Gn of p-power conductor, the special values of dµn,kE,p(x) at ψ equal∫
x∈Gn

ψ(x)dµn,kE,p(x) =
εFn(ρk/Fn ⊗ ψ)p
ap(E)f(ρk/Fn⊗ψ,p)

×Eulpl0(ρk/Fn⊗ψ−1, 1)×LS(E, ρk/Fn ⊗ ψ−1, 1)

(Ω+
EΩ−E)[Fn:Q]

.

(iii) The corresponding power series Lp(E, ρk/Fn, T ) =
∫
x∈Zp(1+T )p

n−1xdµn,kE,p(x) belongs

to the algebra Zp[[(1 + T )p
n−1 − 1]]⊗Q ∼= Zp[[U (n)]]⊗Q.
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Proof. To show that µn,kE,p is bounded, it suffices to check the Kummer congruences – the
argument is the same as [7, proof of Proposition 3.3], which proves (i). Part (ii) follows
from (6) and (7). Finally (iii) is a consequence of [3, Theorem 4.2] which implies that all
special values τ−1

p

(
ψ(Lp(E, ρk/Fn))

)
are Aut(C)-equivariant.

In particular, choosing k = n in parts (ii),(iii) above yields Theorem 1 as a consequence.

We now explain the link between Nk,n
(
Lp(E, ρk/Fk)

)
and Lp(E, ρk/Fn), where Nk,n

is the norm map Zp[[U (k)]] → Zp[[U (n)]] for n ≥ k. Let ψ : Gk → C× be a multiplicative
character; by Artin formalism, there is an equality of complex L-functions∏

η:Gal(Fn/Fk)→C×
L(E, ρk/Fk ⊗ (ηψ)−1, s) = L(E, ρk/Fn ⊗ (ResFnψ)−1, s)

and those characters η in the product may be identified with characters on U (k)/U (n).
Similarly the inductivity of ε-factors, conductors, Euler factors and the motivic periods
(via the Artin formalism) implies that analogous base-change relations hold for the other
terms in the interpolation formula; it follows that∏

η:U(k)/U(n)→Q×p

ηψ
(
Lp(E, ρk/Fk)

)
=

∫
ResU(n)(ψ) · dµn,kE,p = ψ

(
Lp(E, ρk/Fn)

)
at every character ψ : U (k) → Q×p , whence Nk,n

(
Lp(E, ρk/Fk)

)
= Lp(E, ρk/Fn) (for

k = 0, the element Lp(E, ρ0/Fn) coincides with the norm of the p-adic L-function of [17]).

In order to prove Theorem 2, we must establish the system of p-adic congruences
Lp(E, ρk/Fn) ≡ Lp(E, ρn/Fn) mod pZp[[U (n)]] for all n ≥ k. In fact after evaluating at
each character ψ, it is sufficient to establish them modulo the maximal ideal of Cp. This

requires a detailed study of the Fourier expansion of the Hilbert modular form Φn,kψ .

By Atkin-Lehner theory, the linear functional LFn decomposes into a finite linear
combination of the Fourier coefficients, so there exist finitely many ideals ni and fixed
algebraic numbers l(ni) ∈ Q such that

LFn (Θ) =
∑
i

C(ni,Θ)l(ni).

Therefore putting u := ihFn (−4i)φ(pn)/2

C(c(f),f)α(m′l′) which is a p-adic unit, we have∑
ψ

B bψ

∫
x∈Gn

ψ(x)dµ(x) = uB
∑
ψ

bψ LFn
(

Φn,kψ
∣∣U(m′l′l−1

0 )
)

= uB
∑
ψ

bψ
∑
i

C(ni,Φ
n,k
ψ

∣∣U(m′l′l−1
0 ))l(ni)

= u
∑
i

∑
ψ

bψ C(nim
′l′l−1

0 ,Φn,kψ )

B l(ni).

By the same reasoning as [7, proof of Lemma 3.5], it suffices to show the congruences

C(m,Φn,kψ ) ≡ C(m,Φn,nψ ) mod MCp (8)

hold amongst the Fourier coefficients, for all m and ψ.
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Fixing an ideal m = ξt̃−1
λ and applying the second statement in Proposition 17, we

have congruences

C(m,Φn,kψ ) =
∑

ξ1+ξ2=ξ

∑
aCOKn,

aā=ξ1 t̃
−1
λ

(χ†ρk ◦NKn/Kk)(a)ψ†(aā)
∑
ξ̃2=b̃c̃,
c∈OFn,
b∈t̃λ

((det ρk)† ◦NFn/Fk)−1(c̃)ψ†(c̃)−2

≡
∑
ξ1,ξ2

∑
a

ψ†(aā)
∑
c

(θKk/Fk ◦NFn/Fk)(c̃)ψ†(c̃)−2 mod MCp ,

where θKk/Fk is the quadratic character as defined in (2), and

C(m,Φn,nψ ) =
∑

ξ1+ξ2=ξ

∑
aCOKn,

aā=ξ1 t̃
−1
λ

χ†ρn(a)ψ†(aā)
∑
ξ̃2=b̃c̃,
c∈OFn ,
b∈t̃λ

(det ρk)†−1(c̃)ψ†(c̃)−2

≡
∑
ξ1,ξ2

∑
a

ψ†(aā)
∑
c

θKn/Fn(c̃)ψ†(c̃)−2 mod MCp .

Lastly since θKk/Fk ◦NFn/Fk = θKn/Fn the congruences (8) are immediately established,
and Theorem 2 is proved.

2.3 Proof of Theorem 4

From our discussion directly after Proposition 17, the Euler factor in the interpolation
formula for Lp(E, ρk/Fn) is given by

Eulpl0(ρk/Fn ⊗ ψ−1, s) =
(

1− ap(E)ResKn
(
χρk
)
(P)ψ−1(p)ps−1

)
which vanishes at the critical point s = 1 if and only if ap(E) = +1, ψ is the trivial
character, and ResKn(χρk)(P) = 1.

Lemma 19. If δ = ordp(∆
p−1 − 1)− 1 then

ordP

(
fResKn (χρk )

)
=

{
0 if k ≤ δ

2× pk−δ−1 otherwise.

Proof. We decompose ∆ into c×(1+d) where c ∈ µp−1 and d ∈ pZp, thus δ+1 = ordp(d).
Recall that if x, y ∈ Qp(µpn), the pn-th norm residue symbol (x, y) is the pn-th root of
unity satisfying

θ(y)
(
pn
√
x
)

= (x, y) pn
√
x

where θ is the local Artin map Qp(µpn)×/ (Qp(µpn)×)
pn −→ Gal

(
Qp (µpn , p

n√
x) /Qp(µpn)

)
.

Indeed we have

ResKn(χρk)(σ) =
σ
(
pk
√

∆
)

pk
√

∆
=

σ
( pn√

∆pn−k
)

pn
√

∆pn−k

so locally, the character ResKn(χρk) is simply the pn-th norm residue symbol
(
∆pn−k , −

)
.

But ∆pn−k = cp
n−k×(1+dn,k) for some dn,k ∈ pZp, therefore by [5] (also [22, Theorem 8])

ordP

(
fResKn (χρk )

)
=

{
0 if n < ordp(dn,k)

2× pn−ordp(dn,k) otherwise.
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However 1+dn,k = (1+d)p
n−k

and ordp

(
(1 + d)p

n−k − 1
)

= n−k+ordp(d) = n−k+δ+1,

which produces the stated formula.

Without loss of generality, we assume that E has split multiplicative reduction, so that
ap(E) = +1. Then the first statement in Theorem 4 follows immediately, as Eulpl0(ρn, 1) =
0 precisely when χρn has trivial P-conductor, which by the above lemma occurs if and
only if n ≤ δ. To establish Theorem 4(ii), we use the decomposition

Lp
(
E/Q(

pn
√

∆), T
)

= Lp(E,ω
0, T )×

n∏
j=1

Lp(E, ρj , T )

which yields a trivial zero contribution of order 1+
∑min(δ,n)
j=1 1 = min(δ+1, n+1). Moreover

p · OQ(
pn√

∆)
=

P(n),0Pp−1
(n),1P

p(p−1)
(n),2 . . .Pp

n−1(p−1)
(n),n if n ≤ δ(

P(n),0Pp−1
(n),1P

p(p−1)
(n),2 . . .Pp

δ−1(p−1)
(n),δ

)pn−δ
if n > δ

for distinct prime ideals P(n),j ∈ Spec
(
OQ(

pn√
∆)

)
by [16, Lemma 2.2]; hence min(δ+1, n+1)

coincides with the number of primes ideals lying above p, namely δn as asserted.

2.4 λ-invariants and the Proof of Theorem 6

Let λan(E, ρn) be the number of zeros of Lp(E, ρn) counted with multiplicity, where we
view the latter as an element of Zp[[U (1)]] ∼= Zp[[T ]] via the inclusion U (n) ↪→ U (1).
Likewise λan(E,ωj) is the λ-invariant of the ωj-th branch of the Mazur-Tate-Teitelbaum
p-adic L-function Lp(E,ω

j) from [17].

Proposition 20. If we assume Hypothesis(µ = 0), then for all integers n ≥ 1:

(a) There is a linear growth formula λan(E, ρn) = pn−1 ×
∑p−2
j=0 λ

an(E,ωj);

(b) Over each Ln = Q(µpn ,
pn
√

∆), one has λan
Ln

(E) = p2n−1 ×
∑p−2
j=0 λ

an(E,ωj).

Proof. Applying [6, Lemma 2.1], the congruence in Theorem 2 implies that the elements
on both sides share the same λ-invariant. Now by definition,

N0,n(a0) = N1,n

p−2∏
j=0

Lp(E,ω
j)


and if F ∈ Zp[[U (1)]] then the λ-invariant of N1,n(F) equals that of F multiplied by pn−1,
therefore (a) follows directly. To establish part (b), we know that

λan
Ln(E) =

∑
ρ∈Irr(Gal(Ln/Q))

deg(ρ)× λan(E, ρ) from Equation (1).

However, one can decompose the irreducible representations into the disjoint union

Irr
(

Gal(Ln/Q)
)

=
{
θ : Gal(Kn/Q)→ Q×

}
∪
{
ρt ⊗ θ

∣∣∣ 1 ≤ t ≤ n, θ : Gal(Kn/Kt)→ Q×
}

so the result follows from (a), together with some direct calculations.
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Remarks: If the curve E has split multiplicative reduction at p, then the right-hand
side of Proposition 20(a) will be positive because of the trivial zero in Lp(E,ω

0), hence
one must have λan(E, ρn) > 0; however when n > δ, the corresponding ρn-twisted p-
adic L-function does not satisfy the trivial zero condition. If it were then the case that
corankZp

(
Selp∞(E/Ln)ρn

)
> 0, this would suggest (assuming the BSD conjecture) the

vanishing of L(E, ρn, s) at s = 1 for integers n > δ, even if the root number in the
complex ρn-twisted L-function is +1.

We now explain how to deduce Theorem 6 from the previous proposition. Firstly

p · OLn =


∏pn

i=1 p
pn−1(p−1)
(n),i if n ≤ δ∏pδ

i=1 p
p2n−δ−1(p−1)
(n),i if n > δ

by [16, Proposition 2.4], so there are precisely pmin(δ,n) prime ideals of OLn lying above p.
Therefore one concludes

r†Ln(E) = orderT=0

(
Lp(E/Ln, T )

)
− #

{
places ν of Ln over p

}
× 1 + ap(E)

2

≤
[
U (1) : U (n)

]−1 × λan
Ln(E) − pmin(δ,n) × 1 + ap(E)

2

by 20(b)
= p1−n ×

(
p2n−1 ×

p−2∑
j=0

λan(E,ωj)
)
− pmin(δ,n) × 1 + ap(E)

2

and Theorem 6(i) follows as a consequence.

To prove the second statement, observe that

r†
Q(

pn√
∆)

(E) +

(
1 + ap(E)

2

)
× δn = orderT=0

(
Lp
(
E/Q(

pn
√

∆), T
))

= orderT=0

(
Lp
(
E,ω0, T

))
+

n∑
j=1

orderT=0

(
Lp
(
E, ρj , T

))
≤ λan

Q (E) +

n∑
j=1

λan(E, ρj)
by 20(a)

= λan
Q (E) +

n∑
j=1

pj−1 × λan
Q(µp)(E)

and summing up the geometric progression, clearly Theorem 6(ii) must also hold true.

3 The Algebraic Side

We now study the behaviour of the Selmer group of E over QFT . Throughout we fix
a number field K = Ln,m = Q(µpn ,

pm
√

∆) for integers n ≥ m > 0, so that K/Q is
a finite Galois extension contained inside QFT . As in the Introduction, one assumes
M = Selp∞(E/QFT )∧ belongs to the MH(G∞)-category, and denotes by regK the regular
representation of Gal(K/Q).
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3.1 Leading terms of characteristic elements

We begin with some background on the evaluation-at-ρ map Φ′ρ. Let O be the ring of

integers of some finite extension of Qp, and set Γ := Gal
(
Qcyc/Q

)
so that G∞/H ∼= Γ.

One writes ρ† : Zp[[G∞]] −→ Matn×n(O) for the ring homomorphism induced from an
Artin representation ρ : G∞ → GL(n,O).

The continuous group homomorphism G∞ −→ Matn×n
(
O[[Γ]]

)
that sends g ∈ G∞ to

ρ†(g)⊗ (g mod H) extends to a localised algebra homomorphism

Φρ : Zp[[G∞]]S∗ −→ Matn×n
(
QO(Γ)

)
where QO(Γ) indicates the skew-field of quotients of O[[Γ]] (see [4, Lemma 3.3] for details).
On the level of K-groups, we then have a unique extension

Φ′ρ : K1

(
Zp[[G∞]]S∗

)
−→ K1

(
Matn×n

(
QO(Γ)

)) ∼= QO(Γ)×

where the last isomorphism arises by Morita invariance.

Recall from the Introduction that if M is an object lying in the category MH(G∞),
we wrote ξM for a characteristic element in K1(Zp[[G∞]]S∗) satisfying ∂G∞(ξM ) = [M ].
For each Artin representation ρ : GQ � G∞ → GL(V ), by using [4, Diagram (43)] one
has the Akashi series relation

Φ′ρ(ξM ) ≡
∏
j≥0

charZp[[Γ]]

(
Hj

(
H, twρ(M)

))(−1)j

mod Zp[[Γ]]×.

We write Kcyc for the cyclotomic Zp-extension of K, and ΓK will denote its Galois group
(we fix a topological generator γK of ΓK). Define HK := Gal

(
QFT /Kcyc)

)
so that there

is an inclusion HK ↪→ H; in particular, plugging in ρ = regK one obtains an isomorphism

Hj

(
H, twρ(M)

) ∼= Hj

(
HK ,M

)
⊗ regΓ/ΓK

via Shapiro’s lemma. Moreover from [16, proof of 5.4], we have Hj

(
HK ,M

)
= 0 for all

indices j ≥ 1, in which case

Φ′regK
(ξM ) ≡ charZp[[ΓK ]]

(
H0

(
HK ,M)

))
mod Zp[[ΓK ]]×.

Suppose that κ : GQ � Gal
(
Q(µp∞)/Q

) ∼→ Z×p denotes the p-adic cyclotomic character.

Lemma 21. (i) If E has split multplicative reduction at p, then

Φ′regK
(ξM ) ≡

∏
ν|∆

charZp[[ΓK ]]

(
Jν(Kcyc)∧

)
×
∏
vn|p

(
(T + 1)p

n−1

− κ(γvn)
)

× charZp[[ΓK ]]

(
Selp∞(E/Kcyc)∧

)
mod Zp[[ΓK ]]×

where γvn denotes a topological generator of the decomposition group at a place of Kcyc

lying above vn, and Jν(Kcyc) = lim−→K′⊂Kcyc

⊕
π|ν H

1
(
K ′π, E

)
[p∞].

(ii) If E has non-split multplicative reduction at p, then the same formula holds but without

the
∏
vn|p

(
(T + 1)p

n−1− κ(γvn)
)
-term appearing.
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Proof. This is essentially [27, Theorem 6.2]. Indeed the proof of Theorem 1.3 in op. cit.
implies that

Φ′regK
(ξM ) ≡ char

(
Selp∞(E/Kcyc)∧

)
×
∏
ν|∆

char
(
Jν(Kcyc)∧

)
×
∏
vn|p

char
(
H1(Hw, Dw)∧

)
modulo Zp[[ΓK ]]×, where Dw = Qp/Zp if the eigenvalue ap(E) = +1, and Dw = Qp/Zp⊗θ
for an unramified quadratic character θ if ap(E) = −1.

Note that Hw ∼= Zp o Γx where the Zp-extension Γx acts on Zp through κ, and x is
some place of Kcyc above v. In particular Hj(Hw,Qp/Zp) = 0 for every j ≥ 2 by applying
a cohomological dimension argument. Moreover H1(Hw, Dw) is finite if ap(E) = −1,
hence its dual has unit characteristic power series, which then proves statement (ii) above.
Alternatively, if we assume ap(E) = +1 then H1(Hw, Dw)∧ = H1(Hw,Qp/Zp)∧ ∼= Zp(κ)
as a local Λ-module, and (i) follows immediately.

We now analyse the term
∏
vn|p

(
(T + 1)p

n−1− κ(γvn)
)

in the split multiplicative case.
Recalling that K = Ln,m, the cyclotomic character yields an isomorphism(

κ mod GKcyc

)
: Gal

(
Kcyc

/
Q
(
µp,

pm
√

∆
)) ∼−→ 1 + pZp.

Moreover each decomposition group at a place of Kcyc over vn ∈ Spec
(
OK
)

is isomorphic
to 1 + pnZp via κ, in which case∏
vn|p

(
(T+1)p

n−1

−κ(γvn)
)

=
∏
vn|p

(
(T+1)p

n−1

−κ(up
n−1

1 )
)

=
(
(T+1)p

n−1

−κ(u1)p
n−1)#{vn|p}

where u1 denotes a topological generator of U (1).

If n = m then as we have already seen, there are exactly pmin(δ,m) places vn above p.
However if n > m then there are pmin(δ,m) places of Lm over p, and the field extension
Ln,m/Lm is totally ramified at each of these places, so again there must be pmin(δ,m) places
of K = Ln,m lying over p. We have therefore shown

Corollary 22. The term
∏
vn|p

(
(T+1)p

n−1−κ(γvn)
)

equals
(
(T+1)p

n−1−κ(u1)p
n−1)pmin(δ,m)

.

We can directly apply these two results to relate the leading term of Φ′regK
(ξM ) with the

cyclotomic Selmer group. Firstly the power series char
(
Jν(Kcyc)∧

)
has non-zero constant

term, equal to the L-factor Lν(E, 1) mod Z×p by [26, Lemma 2.14] and [27, Remark 1.4].

Moreover (T + 1)p
n−1− κ(u1)p

n−1
∣∣∣
T=0

belongs to pnZp but not pn+1Zp, so the product

term in the previous corollary contributes pnp
min(δ,m)

mod Z×p .

Corollary 23. The power series Φ′regK
(ξM ) has the same order of vanishing at T = 0 as

the characteristic power series of Selp∞(E/Kcyc)∧, and their leading terms differ by

∇G∞ΓK

(
E
)

:=

{
pnp

min(δ,m) ×
∏
ν|∆ Lν(E, 1) mod Z×p if ap(E) = +1∏
ν|∆ Lν(E, 1) mod Z×p if ap(E) = −1.

20



3.2 Proof of Theorems 7 and 9

Let M = Homcts

(
Selp∞(E/Kcyc),Q/Z

)
denote the Pontryagin dual of the Selmer group

over the cyclotomic Zp-extension of K, and set LM = charZp[[ΓK ]]

(
M
)

which is well
defined up to an element of Zp[[ΓK ]]×. There exists a sequence of homomorphisms

H0
(
ΓK ,M

)
=MΓK ↪→ M � M

/
(γK − 1) ∼= H1

(
ΓK ,M

)
and we shall denote their composition by αM. To simplify the exposition, assume that:

(i) the p-primary part of the Tate-Shafarevich group III(E/K) for E over K is finite;

(ii) the p-adic height pairing 〈−,−〉K : E(K)×E(K)→ Qp is non-degenerate [14, 19].

Theorem 24. (Jones [14, Theorem 3.1])

(a) If the natural mapping αM : H0
(
ΓK ,M

)
→ H1

(
ΓK ,M

)
is not a quasi-isomorphism

then rM := orderT=0

(
charZp[[T ]]

(
M
))

> rankZp
(
MΓK

)
.

(b) If the natural mapping H0
(
ΓK ,M

)
→ H1

(
ΓK ,M

)
is a quasi-isomorphism then

orderT=0

(
charZp[[T ]]

(
M
))

= rankZp
(
MΓK

)
, with the higher derivative formula

1

rM!
·

drMLM
(
κ(γK)1−s − 1

)
dsrM

≡ `p(E) × #III(E/K)p∞ × det
(
〈−,−〉K

)
×
∏
ν-∞

[
E(Kν) : E0(Kν)

]
× #E(K)−2

tors mod Z×p .

The quantity rankZp
(
MΓK

)
coincides with sn,m(E) in the Introduction when K = Ln,m,

because the restriction map Selp∞(E/K) → Selp∞(E/Kcyc)ΓK is quasi-injective, and its
cokernel has Zp-corank equal to pmin(δ,m) if ap(E) = +1, and equal to 0 if ap(E) = −1.
Furthermore there are inequalities

sn,m(E) = rankZp
(
MΓK

) by Thm 24

≤ orderT=0

(
LM

) by Thm 23
= orderT=0

(
Φ′regK

(ξM )
)

which are all bounded above by λalg
K (E), and therefore Theorem 7(a) is proved.

Combining the previous theorem with Corollary 23, then Theorem 7(b) follows as a
direct consequence of the congruence

1

rM!
·

drMΦ′regK
(ξM )

dT rM
≡ ∇G∞ΓK

(
E
)
× 1

rM!
·

drMLM
(
κ(γK)1−s − 1

)
dsrM

mod Z×p .

Theorem 9 is now immediate as the finiteness of Selp∞(E/K) implies both the finiteness
of the p-primary part of III(E/K), and the non-degeneracy of the p-adic height pairing
(indeed E(K)⊗Qp will be zero, so this pairing does not even appear in the calculation of
the leading term).
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3.3 Formulating the Iwasawa Main Conjecture

The statement of our conjecture follows the format of Coates et al [4] in the GL2-setting,
and in the non-split case there are essentially no surprises. Intriguingly in the case of
split multiplicative reduction, the specialisations Φ′ρn(ξM ) are divisible by an extra factor
Dp(ρn, T ) when n ≤ δ, and so the Main Conjecture would imply the same divisibility
holds for the analytic p-adic L-function Lp(E, ρn, T ) if n ≤ δ. Lloyd Peters’ numerical
calculations in the Appendix support this divisibility for some sample elliptic curves E/Q.

Definition 25. (a) If σ : G∞ → GL(V ) is an irreducible Artin representation, then

Dp(σ, T ) :=


T + 1− σκ(u1) if dim(σ) = 1 with σ

∣∣
U

(0)
tors

= 1

(T + 1)p
n−1 −

(
ψκ(u1)

)pn−1

if σ ∼= ρn ⊗ ψ with 1 ≤ n ≤ δ
1 otherwise.

(b) If ρ ∼=
⊕

σ∈Irr(G∞) σ
⊕eσ then one defines Dp(ρ, T ) :=

∏
σ∈Irr(G∞)Dp(σ, T )eσ .

The motivation for introducing these Dp-factors is that, when specialised to the regular
representation (at any finite layer in QFT ), they coincide with the terms in Corollary 22.

Proposition 26. If ρ = regK where the number field K = Ln,m 6= Q, then

Dp(regK , T ) =
(
(T + 1)p

n−1

− κ(u1)p
n−1)pmin(δ,m)

and consequently Dp(regK , 0) ≡ pnpmin(δ,m)

mod Z×p .

Proof. We proceed by induction on both n,m. Let us treat the diagonal case n = m first.
If n = 1 then regL1

∼=
⊕p−2

j=0 ω
j ⊕ ρp−1

1 , in which case

Dp(regL1
, T ) =

(
T+1−κ(u1)

)
×

{(
T + 1− κ(u1)

)p−1
if δ > 0

1 if δ = 0

}
=
(
T+1−κ(u1)

)pmin(δ,1)

.

Assume further that n > 1, and the predicted formula for Dp(regLn−1
, T ) above is correct.

It is easy to see that

regLn
∼=
(⊕

ψ

regLn−1
⊗ ψ

)
⊕ ρp

n−pn−1

n

where the sum runs over any p characters ψ : Gal(Kn/Q) → C× whose restrictions to
Gal(Kn/Kn−1) are pairwise distinct (in fact, one can even assume ψ

∣∣
U

(0)
tors

= 1 for each ψ).

Case(I): If n ≤ δ then

Dp(regLn , T ) =
∏
ψ

Dp(regLn−1
⊗ ψ, T ) × Dp(ρn, T )p

n−pn−1

=
∏
ψ

(
(T + 1)p

n−2

−
(
ψκ(u1)

)pn−2)pn−1

× Dp(ρn, T )p
n−pn−1

=
∏
ζ∈µp

(
(T + 1)p

n−2

− ζ × κ(u1)p
n−2
)pn−1

×
(
(T + 1)p

n−1

− κ(u1)p
n−1)pn−pn−1

=
(
(T + 1)p

n−1

− κ(u1)p
n−1)pn−1+pn−pn−1

=
(
(T + 1)p

n−1

− κ(u1)p
n−1)pmin(δ,n)

.
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Case(II): If n > δ then

Dp(regLn , T ) =
∏
ψ

Dp(regLn−1
⊗ ψ, T ) × Dp(ρn, T )p

n−pn−1

=
∏
ψ

(
(T + 1)p

n−2

−
(
ψκ(u1)

)pn−2)pδ
× 1p

n−pn−1

=
∏
ζ∈µp

(
(T + 1)p

n−2

− ζ × κ(u1)p
n−2
)pδ

=
(
(T + 1)p

n−1

− κ(u1)p
n−1)pmin(δ,n)

.

To extend to the non-diagonal situation n > m > 0, recall that regLn,m
∼=
⊕

θ regLm⊗ θ
where the pn−m characters θ : Gal(Kn/Q) → C× are pairwise distinct on Gal(Kn/Km).
Therefore, since the diagonal case is already established, we deduce

Dp(regLn,m , T ) =
∏
θ

Dp(regLm ⊗ θ, T ) =
∏
θ

(
(T + 1)p

m−1

−
(
θκ(u1)

)pm−1)pmin(δ,m)

=
∏

ζ∈µpn−m

(
(T + 1)p

m−1

− ζ × κ(u1)p
m−1

)pmin(δ,m)

=
(
(T + 1)p

n−1

− κ(u1)p
n−1)pmin(δ,m)

as required.

Let ι : K1

(
Zp[[G∞]]

)
−→ K1

(
Zp[[G∞]]S∗

)
denote the homomorphism induced from the

natural map Zp[[G∞]] −→ Zp[[G∞]]S∗ into the localisation. We can relate the abelian
p-adic L-functions constructed in Theorem 1 with the Selmer group over QFT , as follows.

Conjecture 27 (Main Conjecture). There exists an element u ∈ K1(Zp[[G∞]]) satisfying

Φ′ρ
(
ξM
)

= Φ′ρ
(
ι(u)

)
× Lp

(
E, ρ, u1 − 1

)
at every Artin representation ρ : GQ � G∞ → GL(V ).

The term u arises as there are many choices of lift ξM for the class [M ] under the projection
∂G∞ : K1(Zp[[G∞]]S∗) � K0 (MH(G∞)). Thus the Main Conjecture predicts ξM/ι(u) is
the canonical choice of algebraic element, compatible with the L-functions in Theorem 1.

We conclude the main text by focussing solely on the split multiplicative case ap(E) = +1.
The discussion at the start of this section indicates that Φ′ρ

(
ξM
)

should be divisible by
Dp(ρ, T ), and so the same should therefore be true for Lp(E, ρ, T ) via the Main Conjecture.

Let us now consider the representation IndQ
Kn

(1) ∼=
⊕

ψ∈regKn
ψ.

Remark: If the prime p ≥ 5, then a straightforward application of the Greenberg-Stevens
formula [13, Theorem 7.1] implies that

dLp
(
E, IndQ

Kn
(1), T

)
dT

∣∣∣∣∣
T=0

=
logp(qE,p)

ordp(qE,p)
× LE

(
IndQ

Kn
(1)
)

where the algebraic L-value LE
(
IndQ

Kn
(1)
)

:=
√

discKn ×
LS(E/Kn,1)

(Ω+
EΩ−E)[Fn:Q]

.
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As a consequence, one has Lp
(
E/Kn, T

)
= 0 +

logp(qE,p)

ordp(qE,p) × LE
(
IndQ

Kn
(1)
)
× T + O(T 2).

If n = 1 then Dp(regK1
, T ) = T − (κ(u1) − 1) = pw + T + O(T 2) for some unit w ∈ Z×p ;

it follows that Dp(regK1
, T ) can only divide into Lp

(
E/K1, T

)
, provided the derivative of

Lp
(
E/K1, T

)
lies in the maximal ideal of Zp.

Conjecture 28. If ap(E) = +1 then
logp(qE,p)

ordp(qE,p) × LE(regK1
) ∈ pZp.

In the Appendix below, for the primes p = 3 and 5 it is verified that LE(regQ(µp)) ∈ pZp
at various choices of ∆ ≤ 97, and for a selection of elliptic curves E of conductor ≤ 70.
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Théor. Nombres Bordeaux 16 (2004), no. 3, p 779-816.

[26] S. L. Zerbes: Generalised Euler characteristics of Selmer groups, Proc. Lond. Math.
Soc. 98 (2009), no. 3, p 775-96.

[27] S. L. Zerbes: Akashi series of Selmer groups, Math. Proc. Cambridge Philos. Soc.
151 (2011), no. 2, p 229-243.

26



Appendix – Numerical Calculations at 3 and 5

by Lloyd Christopher Peters

Our aim is to numerically verify the first layer mod p congruences predicted in this paper.
Due to computational limitations, the congruences are only checked at the primes 3 and 5.
The author thanks Tom Ward for providing him with his personal code, and the University
of Sydney for granting him a free MAGMA developer’s licence.

The notations employed here are almost identical to the previous text; in particular
E/Q denotes an elliptic curve with bad multiplicative reduction at a fixed odd prime p.

Let us now define K := Q(µp), F := Q(µp)
+ and L := Q(µp,

p
√

∆).

Remark: We write σ for the regular representation of Gal(K/Q), and ρ for the self-dual
irreducible Artin representation on Gal(L/Q) of dimension p−1. Note that σ decomposes

into the sum
⊕p−1

i=1 ω
i, which means the σ-twisted Hasse-Weil L-function becomes

L(E, σ, s) =

p−1∏
i=1

L(E,ωi, s).

The right hand side of this equation is easier to compute (at s = 1) than the left hand side

since ωi is 1-dimensional; moreover on the level of ε-factors, we have εF (σ)p =
∏p−1
i=1 ε(ω

i)p.

Recall that S denoted the set of primes dividing ∆, and δ := ordp(∆
p−1 − 1) − 1 ≥ 0.

Henceforth we shall treat only examples where δ = 0. Consider the following quantities:

• L∗ =

∣∣∣∣L(E,ρ,1)
√

discF

(2Ω+
EΩ−E)

(p−1)
2

∣∣∣∣ where discF denotes the discriminant of F .

• 1
(
Lp(E, ρ)

)
= LS(E,ρ,1)

(Ω+
EΩ−E)

p−1
2

· εF (ρ)p
ap(E)f(ρ,p)

(
1− ap(E)χρ (P)

)
with P the prime above p;

in fact, the condition δ = 0 ensures that
(
1− ap(E)χρ (P)

)
= 1.

• 1
(
Lp(E, σ)

)
= LS(E,σ,1)

(Ω+
EΩ−E)

p−1
2

· εF (σ)p
ap(E)f(σ,p) ·

(
1− ap(E)

)
.

If ap(E) = +1 then
(
1 − ap(E)

)
= 0, which produces an exceptional zero in Lp(E, σ, T ).

Therefore if E has split multiplicative reduction, we instead tabulate the quantity

logp(qE,p)

ordp(qE,p)
× LE(IndQ

K(1)) =
logp(qE,p)

ordp(qE,p)
×
√

discK ×
LS(E, σ, 1)(
Ω+
EΩ−E

) p−1
2

corresponding to the first derivative of the p-adic L-function attached to the σ-twist of E.

Throughout we have calculated L(E, σ, 1), L(E, ρ, 1), Pq(E, ρ, q
−1), Pq(E, σ, q

−1),
εF (ρ)p, εF (σ)p, Ω+

E and Ω−E as complex numbers accurate to 15 digit decimal precision.
The corresponding algebraic L-values are recorded in Tables 1–9 by listing the coefficients
of their p-adic expansions up to order O(p8).

To form a part of the author’s Monash PhD thesis

27



Table 1: E15a1 with equation y2 + xy + y = x3 + x2 − 10x − 10,
which has non-split multiplicative reduction at p = 3.

∆ L∗ 1 (Lp(E, ρ)) 1 (Lp(E, σ))

2 4 [1,1,0,0,0,0,0,0,0] [1,0,0,0,0,0,0,0,0]
5 0 [0,0,0,0,0,0,0,0,0] [0,1,2,2,1,2,2,0,0]
7 16 [2,0,2,2,0,1,0,2,2] [2,2,2,2,0,2,1,1,2]
11 16 [1,2,2,0,0,1,1,2,2] [1,2,0,1,1,0,2,0,0]
13 4 [2,0,1,1,0,1,1,0,0] [2,2,2,1,2,1,2,2,2]
14 4 [1,2,1,2,0,1,0,2,2] [1,2,2,2,1,1,0,0,0]
20 0 [0,0,0,0,0,0,0,0,0] [0,2,1,2,0,2,2,1,2]
22 64 [2,1,2,1,0,2,2,1,2] [2,1,1,2,2,0,1,1,0]
23 0 [0,0,0,0,0,0,0,0,0] [0,0,2,0,0,1,0,0,0]
29 4 [1,1,0,1,2,2,0,0,0] [1,1,0,0,0,0,2,2,2]
31 4 [2,0,0,1,1,1,0,1,0] [2,1,0,0,1,1,2,1,2]
34 64 [2,2,2,2,1,2,0,2,2] [2,1,1,0,2,2,2,2,2]
38 4 [1,1,1,0,0,2,2,1,2] [1,1,0,1,0,0,0,1,0]
41 4 [1,2,1,0,2,0,1,2,2] [1,2,0,0,0,0,0,1,0]
43 64 [2,2,0,1,1,1,0,2,2] [2,0,2,1,2,0,2,1,2]
47 16 [1,2,0,2,2,1,0,1,0] [1,0,2,2,0,1,1,1,0]
50 0 [0,0,0,0,0,0,0,0,0] [0,2,1,2,0,2,2,1,2]
52 100 [1,2,1,2,2,0,2,2,2] [1,2,2,0,2,0,2,2,2]
58 400 [2,0,1,0,2,1,1,0,0] [2,2,0,0,0,0,1,2,2]
59 64 [1,1,0,1,0,1,1,0,0] [1,1,2,2,2,0,0,0,0]
61 64 [2,2,2,0,0,0,1,0,0] [2,2,1,1,2,1,0,2,2]
67 16 [2,2,1,1,0,0,2,2,2] [2,2,0,0,2,1,0,2,2]
68 196 [2,0,0,0,1,2,1,1,2] [2,1,1,0,2,2,2,2,2]
70 0 [0,0,0,0,0,0,0,0,0] [0,2,2,0,1,2,2,2,2]
74 36 [0,0,1,1,2,0,2,2,2] [0,0,1,1,2,1,0,1,0]
76 64 [1,0,2,1,2,2,0,0,0] [1,1,0,1,0,0,0,1,0]
77 64 [1,1,2,1,0,0,2,2,2] [1,1,1,0,2,1,2,1,2]
79 64 [2,2,1,0,0,1,2,1,2] [2,2,1,2,2,2,2,2,2]
83 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,1,0,1,1,0]
85 0 [0,0,0,0,0,0,0,0,0] [0,2,2,2,2,2,1,1,2]
86 4 [1,2,0,1,0,0,1,0,0] [1,1,1,0,2,1,1,0,0]
92 36 [0,0,2,2,2,1,0,2,2] [0,0,1,1,0,2,0,0,0]
94 484 [2,2,0,2,0,1,1,1,0] [2,0,1,2,1,2,2,2,2]
95 0 [0,0,0,0,0,0,0,0,0] [0,1,0,2,2,0,2,2,2]
97 144 [0,0,2,0,0,0,1,0,0] [0,0,2,0,0,0,2,0,0]
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Table 2: E21a1 with Weierstrass equation y2 + xy = x3 − 4x− 1,
which has split multiplicative reduction at p = 3.

∆ L∗ 1 (Lp(E, ρ))
logp(qE,p)

ordp(qE,p)LE(IndQ
K(1))

2 0 [0,0,0,0,0,0,0,0,0] [0,2,2,2,2,0,1,0,0]
5 0 [0,0,0,0,0,0,0,0,0] [0,2,2,0,1,2,1,1,2]
7 0 [0,0,0,0,0,0,0,0,0] [0,1,0,0,0,1,2,0,0]
11 0 [0,0,0,0,0,0,0,0,0] [0,2,0,2,1,2,2,0,0]
13 0 [0,0,0,0,0,0,0,0,0] [0,1,0,0,1,2,2,2,2]
14 0 [0,0,0,0,0,0,0,0,0] [0,2,0,0,0,2,1,1,2]
20 0 [0,0,0,0,0,0,0,0,0] [0,1,2,1,2,1,0,0,0]
22 0 [0,0,0,0,0,0,0,0,0] [0,1,1,1,0,2,2,1,2]
23 0 [0,0,0,0,0,0,0,0,0] [0,0,0,1,2,2,1,1,2]
29 0 [0,0,0,0,0,0,0,0,0] [0,2,1,2,2,0,2,2,2]
31 0 [0,0,0,0,0,0,0,0,0] [0,1,1,2,2,0,2,2,2]
34 0 [0,0,0,0,0,0,0,0,0] [0,0,0,1,1,0,1,2,2]
38 0 [0,0,0,0,0,0,0,0,0] [0,2,1,2,1,0,2,1,2]
41 0 [0,0,0,0,0,0,0,0,0] [0,2,2,1,1,1,2,1,2]
43 0 [0,0,0,0,0,0,0,0,0] [0,0,0,1,1,1,2,1,2]
47 0 [0,0,0,0,0,0,0,0,0] [0,0,0,1,1,0,1,1,0]
50 0 [0,0,0,0,0,0,0,0,0] [0,1,2,1,2,1,0,0,0]
52 0 [0,0,0,0,0,0,0,0,0] [0,2,0,0,2,1,2,2,2]
58 0 [0,0,0,0,0,0,0,0,0] [0,1,0,2,2,1,1,2,2]
59 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,2,1,0,1,0]
61 0 [0,0,0,0,0,0,0,0,0] [0,1,0,1,1,2,2,0,0]
67 0 [0,0,0,0,0,0,0,0,0] [0,1,2,1,0,2,1,1,2]
68 0 [0,0,0,0,0,0,0,0,0] [0,0,0,1,1,0,1,2,2]
70 0 [0,0,0,0,0,0,0,0,0] [0,1,1,2,0,1,1,2,2]
74 0 [0,0,0,0,0,0,0,0,0] [0,2,0,2,1,1,1,0,0]
76 0 [0,0,0,0,0,0,0,0,0] [0,2,1,2,1,0,2,1,2]
77 0 [0,0,0,0,0,0,0,0,0] [0,2,1,1,2,1,0,0,0]
79 0 [0,0,0,0,0,0,0,0,0] [0,0,0,1,2,0,1,1,0]
83 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,1,1,2,1,2]
85 0 [0,0,0,0,0,0,0,0,0] [0,0,0,1,1,2,1,2,2]
86 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,2,2,1,0,0]
92 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,1,2,0,0,0]
94 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,2,0,2,2,2]
95 0 [0,0,0,0,0,0,0,0,0] [0,2,1,0,1,0,2,1,2]
97 0 [0,0,0,0,0,0,0,0,0] [0,1,0,0,1,1,0,2,2]
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Table 3: E30a1 with Weierstrass equation y2 +xy+y = x3 +x+2,
which has split multiplicative reduction at p = 3.

∆ L∗ 1 (Lp(E, ρ))
logp(qE,p)

ordp(qE,p)LE(IndQ
K(1))

2 3 [0,2,2,2,2,2,2,2,2] [0,0,2,1,2,1,2,2,2]
5 12 [0,2,0,2,1,0,1,2,2] [0,0,1,0,1,2,1,2,2]
7 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,2,0,2,1,2]
11 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,2,2,2,0,0]
13 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,0,0,1,2,2]
14 27 [0,0,0,2,1,2,0,1,0] [0,0,0,0,2,0,0,2,2]
20 0 [0,0,0,0,0,0,0,0,0] [0,0,0,1,2,1,0,1,0]
22 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,2,0,2,0,0]
23 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,2,1,0,1,0]
29 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,1,2,0,1,0]
31 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,2,1,1,1,2]
34 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,1,2,1,2,2]
38 27 [0,0,0,2,2,1,0,2,2] [0,0,0,0,2,1,2,0,0]
41 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,2,2,0,0,0]
43 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,0,1,0,2,2]
47 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,0,2,2,2,2]
50 0 [0,0,0,0,0,0,0,0,0] [0,0,0,1,2,1,0,1,0]
52 27 [0,0,0,2,0,0,2,0,0] [0,0,0,0,2,1,1,2,2]
58 108 [0,0,0,1,2,2,0,0,0] [0,0,0,0,0,1,1,2,2]
59 0 [0,0,0,0,0,0,0,0,0] [0,0,0,2,1,1,0,1,0]
61 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,0,2,1,0,0]
67 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,0,2,2,0,0]

Table 4: E33a1 with Weierstrass equation y2 +xy = x3 +x2−11x,
which has non-split multiplicative reduction at p = 3.

∆ L∗ 1 (Lp(E, ρ)) 1 (Lp(E, σ))

2 2 [2,0,0,0,0,0,0,0,0] [2,0,0,0,0,0,0,0,0]
5 2 [2,2,1,0,1,2,1,0,0] [2,0,1,0,0,2,1,1,2]
7 2 [1,2,1,2,0,1,0,2,2] [1,1,1,1,0,1,2,0,0]
11 0 [0,0,0,0,0,0,0,0,0] [0,1,0,0,0,2,0,0,0]
13 50 [1,2,1,2,2,0,2,2,2] [1,2,2,0,2,0,2,2,2]
14 32 [2,0,2,2,0,1,0,2,2] [2,2,2,2,0,2,1,1,2]
20 98 [1,2,2,1,2,1,0,1,0] [1,1,2,0,0,1,0,0,0]
22 0 [0,0,0,0,0,0,0,0,0] [0,2,0,0,0,1,1,0,0]
23 2 [2,2,2,1,0,2,2,0,0] [2,1,0,2,2,1,0,2,2]
29 162 [0,0,0,0,2,0,0,2,2] [0,0,0,2,2,0,1,0,0]
31 32 [1,2,1,2,1,2,0,0,0] [1,0,2,1,2,0,1,0,0]
34 338 [1,1,0,2,2,2,1,2,2] [1,0,0,1,1,2,2,2,2]
38 8 [2,2,2,0,0,1,2,0,0] [2,2,2,0,2,0,1,2,2]
41 200 [2,2,1,2,1,0,2,0,0] [2,0,2,2,1,0,2,0,0]
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Table 5: E15a1 with equation y2 + xy + y = x3 + x2 − 10x − 10,
which has split multiplicative reduction at p = 5.

∆ L∗ 1 (Lp(E, ρ))
logp(qE,p)

ordp(qE,p)LE(IndQ
K(1))

2 0 [0,0,0,0,0,0,0,0,0] [0,2,0,1,1,3,4,2,4]
3 80 [0,1,4,0,1,2,4,3,4] [0,0,2,4,1,4,1,4,4]
6 320 [0,1,4,1,4,4,2,3,4] [0,0,2,4,1,4,1,4,4]
9 80 [0,1,4,0,1,2,4,3,4] [0,0,2,4,1,4,1,4,4]

Table 6: E30a1 with Weierstrass equation y2 +xy+y = x3 +x+2,
which has non-split multiplicative reduction at p = 5.

∆ L∗ 1 (Lp(E, ρ)) 1 (Lp(E, σ))

2 0 [0,0,0,0,0,0,0,0,0] [0,1,1,1,1,1,1,1,0]
3 0 [0,0,0,0,0,0,0,0,0] [0,2,0,1,4,0,3,2,4]
6 180 [0,1,4,4,4,4,4,4,4] [0,0,1,3,3,1,2,2,0]
9 0 [0,0,0,0,0,0,0,0,0] [0,2,0,1,4,0,3,2,4]

Table 7: E35a1 with Weierstrass equation y2 +y = x3 +x2 +9x+1,
which has non-split multiplicative reduction at p = 5.

∆ L∗ 1 (Lp(E, ρ)) 1 (Lp(E, σ))

2 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0]
3 0 [0,0,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0]

Table 8: E55a1 with Weierstrass equation y2+xy = x3−x2−4x+3,
which has split multiplicative reduction at p = 5.

∆ L∗ 1 (Lp(E, ρ))
logp(qE,p)

ordp(qE,p)LE(IndQ
K(1))

2 20 [0,4,0,0,0,0,0,0,0] [0,0,0,0,0,0,0,0,0]

Table 9: E70a1 with equation y2 +xy+y = x3−x2 +2x−3, which
has non-split multiplicative reduction at p = 5.

∆ L∗ 1 (Lp(E, ρ)) 1 (Lp(E, σ))

2 0 [0,0,0,0,0,0,0,0,0] [0,3,3,3,3,3,3,3,4]
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