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ABSTRACT. The goal of this article is to study the Iwasawa theory of an abelian variety
A that has complex multiplication by a CM field F that contains the reflex field of A,
which has supersingular reduction at every prime above p. To do so, we make use
of the signed Coleman maps constructed in our companion article [BL14] to introduce
signed Selmer groups as well as a signed p-adic L-function via a reciprocity conjecture
we formulate for the (conjectural) Rubin-Stark elements (which is a natural extension
of the reciprocity conjecture for elliptic units). We then prove a signed main conjec-
ture relating these two objects. To achieve this, we develop along the way a theory
of Coleman-adapted rank-g Euler-Kolyvagin systems to be applied with Rubin-Stark
elements and deduce the main conjecture for the maximal Zp-power extension of F for
the primes failing the ordinary hypothesis of Katz.
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1. INTRODUCTION

Let F be a CM field and suppose [F : Q] = 2g and d = d(F ) denote Leopoldt’s
defect1. Let K denote the maximal totally real subfield of F . We fix forever a prime
p > 3 that is unramified in F . Iwasawa theory over the CM field F has been studied in
[Hid06, Hid09, Hsi14, Mai08, Büy13b] under a certain p-ordinary hypothesis of Katz.
Our goal here is to carry out a similar task in the absence of this hypothesis; as a mat-
ter of fact, in some sense in the other extreme case when:

(H.K.) Every prime of F above p is of degree 2 over the prime of K that lies below
it.

That we work under the hypothesis (H.K.) is mostly due to our effort to keep the
length of our exposition within reasonable limits. See Remark 1.3 below for a discus-
sion regarding this point.

More precisely, what we establish in this article is as follows:

(i) We prove a (g + 1)-variable main conjecture for a CM field F using what we
call the (conjectural) Perrin-Riou-Stark elements2;

(ii) We prove a divisibility in the (one-variable) cyclotomic main conjecture for a
p-supersingular abelian variety that has CM by F and defined over K, as for-
mulated in [BL14] (still assuming the Perrin-Riou-Stark conjecture3) ;

(iii) We apply (i) in order to deduce that the Perrin-Riou-Stark Kolyvagin systems
utilized to prove (ii) are primitive (in the sense of [MR04, Definition 5.3.9]). The
bound these Kolyvagin systems give is therefore sharp by a suitable extension
of [MR04, Theorem 5.3.10(iii)] (which we discuss as part of Theorem A.14).

The step (iii) concludes the proof of the signed main conjecture for an abelian variety
that has CM by F (or equivalently, Perrin-Riou’s main conjecture in this context).

The proof of (i) and (ii) is similar to a two-variable main-conjecture and signed main
conjecture proved in a recent work of the first named author [Büy13c] for a CM elliptic

1As we will be assuming Leopoldt’s conjecture for all the main results of this article, d will be zero in
the statements of our main results.
2These are essentially the (conjectural) Rubin-Stark elements along the maximal Zp-power extension
F∞ of F . Precise definition of these elements is given in Section 4.2. Their defining property is inspired
from Perrin-Riou’s notion of higher rank Euler systems, see Remark 4.15 for a comparison of what we
call the Perrin-Riou-Stark conjecture to the original Rubin-Stark conjecture.
3One may in fact deduce (i) only utilizing the Rubin-Stark elements. However, our sights are set on the
cyclotomic main conjecture for a CM abelian variety and for this portion we make use of the Perrin-
Riou-Stark elements, that (by definition) enjoy a slightly stronger norm-compatibility along F∞/F .
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curve defined over a general totally real field, modulo the complications that arise
in the current work due to the fact that the images of the signed Coleman maps that
we have constructed in our companion article [BL14] are not necessarily free. We
overcome this technical difficulty in Appendix A below.

The proof of (iii) relies on various constructions we carry out in this article; essen-
tial ingredient being the rigidity of Kolyvagin systems and the signed Coleman maps
again. The former point is one of the novelties in this article. In [PR04], the corre-
sponding statement (Kobayashi’s conjecture) was deduced from a (two-variable) CM
main conjecture by a descent argument. For this reason, Pollack and Rubin had to uti-
lize the non-existence of pseudo-null submodules of various Iwasawa modules. The
analogous statements are not available in our context and our methods in Section 7
here are designed exactly to by-pass this issue.

We advise the reader that all these steps are listed in concrete form in the statement
Theorem 7.7.

Before we explain our results in greater detail, we set some notation. Let A/F be a
principally polarized abelian variety which has CM by F . Fix once and for all an odd
prime p that is is unramified in F and is such that the endomorphism ring EndF (A)
is an order in F whose index inside the maximal order is coprime to p. We assume
further that the field F contains the reflex field of (the CM pair (F,ΣA) associated to)
the CM abelian variety A. Let Φ be the completion of F at a prime p above p and let O
denote its ring of integers.

LetF∞ denote the unique Zg+1+d
p -extension ofF andF cyc the cyclotomic Zp-extension.

Let Γ = Gal(F∞/F ), Γcyc = Gal(F cyc/F ) and γcyc be a fixed topological generator of
Γcyc. We define the (g+1+d)-variable (resp., one-variable) Iwasawa algebra Λ := O[[Γ]]
(resp., Λcyc := O[[Γcyc]]).

1.1. Statements of the results. The principal objective in this article is to study the cy-
clotomic Iwasawa theory of the abelian variety A/F for supersingular primes. Let A∨
denote the dual abelian variety and let I ⊂ {1, · · · , 2g} be a subset which is chosen so
as to verify the conclusion of Proposition 6.9. Fix a prime p of F above p. The starting
point of our strategy involves introducing signed local conditions (as in Section 5)

H1
I (F (µµµp∞)p, A

∨[p∞]) ⊂ H1 (F (µµµp∞)p, A
∨[p∞])

in the spirit of Kobayashi [Kob03] with the aid of the Coleman maps we defined in
[BL14]. The signed-subgroups we have introduced are in turn used to define a signed-
Selmer group SelIp(A∨/F cyc) (that we will prove to be cotorsion under certain hypothe-
ses, as well as that they control the classical Selmer group, see Proposition 8.3 below).

We next formulate a reciprocity law for the conjectural Perrin-Riou-Stark elements
(Conjecture 4.18 below) much in the spirit of the explicit reciprocity law for elliptic
units. Assuming the truth of this conjecture and using the signed Coleman maps we
introduce in §7.2 the signed p-adic L-functions LIp(A∨) ∈ Λcyc which satisfy a suitable
interpolation property (see Proposition 7.15).

We have the following theorem concerning the signed main conjecture which com-
pares the signed Selmer group to the relevant signed p-adic L-function, generalizing
the main conjecture proved in [PR04]. Assume the truth of Rubin-Stark conjectures for
pro-p abelian extensions of F as well as its strengthening (which we called Perrin-Riou-Stark
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conjecture in the main text) Conjecture 4.14 and Leopoldt’s conjecture for the field F (A[p])
for Theorems A, B and C below.

Remark 1.1. Although we have no way to verify Perrin-Riou’s conjecture (which we
have to assume for our main results), we are able to present a modest evidence to-
wards its truth in Appendix B. More precisely, we are able to prove that the Kolyvagin
systems that the Perrin-Riou-Stark elements ought to produce do exist uncondition-
ally over the maximal Zp-tower.

Theorem A (Theorem 7.16). If the Perrin-Riou-Stark elements verify the Explicit Reci-
procity Conjecture 4.18, then

char
(
SelIp(A

∨/F cyc)∨
)

=
LIp(A∨)

(γcyc − 1)n(I)
· Λcyc ,

where n(I) ≥ 0 is some integer determined by the image our signed Coleman map.

Note that the constant n(I) is in fact 0 when we choose an appropriate basis of the
Dieudonné module of the abelian variety at p. Theorem A would have the following
consequences towards the Birch and Swinnerton-Dyer conjecture for the CM abelian
varietyA over F . For α, β ∈ Qp we write α ∼p β if ordp(α) = ordp(β). The periods ΩJ

ψ,p

and ΩJ
ψ are introduced as part of the (conjectural) description of Perrin-Riou’s p-adic

L-function in Conjecture 4.18, whereas the coefficients DI,J in Definition 7.14.

Theorem B (Theorem 8.4). Assume that the hypotheses of Theorem A hold true and let I ∈ I
be chosen as above with n(I) = 0. The following two assertions are equivalent:

1. L{p}(ψ, 1) 6= 0 and the p-adic period
∑

J∈IDI,J
ΩJψ,p
ΩJψ

does not vanish.
2. The p-adic Selmer group Selp(A

∨/F ) of the dual abelian variety A∨ is finite.

In either case,

|Selp(A
∨/F )| ∼p L{p}(ψ, 1) ·

∑
J∈I

DI,J
ΩJ
ψ,p

ΩJ
ψ

.

The sharpness we were able to achieve both in Theorems A and B is thanks to our
result on the the (g+1)-variable supersingular Iwasawa main conjecture for F∞/F (The-
orem C below). Theorem C is a generalization of the two-variable main conjecture
proved in [Rub91, Büy13c] for certain class of Dirichlet characters of F . Before we can
state it we need to introduce further notation.

Let ρ denote the Dirichlet character of F giving the action of GF on A[p] (given as in
Definition 2.1 and denoted by ωψ when we would like to emphasize its relation with
a certain Hecke character ψ associated to A). Let C̃ρ denote a certain signed Coleman
map (given as in Definition 5.13) and let loc⊗gp (ερF∞) denote the image of the tower of
Rubin-Stark elements (defined as in Definition 4.6) under the semi-localization map
at p.

Let X̂∞ be a certain Iwasawa module (denoted by H1
F∗I

(F,T∗ρ)∨ in the main text); see
Section 6 for a precise definition of this Λ-module.

Theorem C (Theorem 7.7). The element C̃ρ ◦ loc⊗gp (ερF∞) generates the ideal char(X̂∞).
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Theorem C was proved by Rubin in [Rub91, §11] when g = 1 using the elliptic
unit Euler system. Our result, which holds true for any g, uses the Perrin-Riou-Stark
elements4 and the Coleman-adapted rank g Euler-Kolyvagin system machinery devel-
oped in Appendix A by refining some of the results of [Büy13c, Büy10].

Remark 1.2. When F verifies the p-ordinary hypothesis of Katz, a multi-variable main
conjecture for F may be proved unconditionally in a wide-variety of cases relying
on the Eisenstein/CM ideal method, c.f. [Hid06, Hid09, Mai08, Hsi14]. When the p-
ordinary hypothesis fails, however, this approach breaks down. For this reason we
still hope that the results we present above towards the CM main conjecture, albeit
being conditional on the truth of the Perrin-Riou-Stark conjecture, will shed some
light on the Iwasawa theoretic study of general CM fields.

Note however that we are able to prove in Appendix B that the Kolyvagin systems
which the conjectural Perrin-Riou-Stark elements yield do in fact exist unconditionally.
It would be very interesting to make use of this fact in order to deduce unconditional
versions of Theorems 7.7, 7.16 and 8.4 in certain situations, such as when the CM field
F is absolutely abelian.

Remark 1.3. We have stated our results when the Katz’ p-ordinary hypothesis fails in
the most extreme way and the prime p verifies (H.K.). In particular, a CM abelian va-
riety A has supersingular reduction at all primes above p by [Sug12]. At every prime
q | p of F we construct signed Coleman maps and use their kernels to modify the local
condition of the Selmer group at each of these primes. We remark that when A is not
supersingular at all primes above p, we could still define signed Selmer groups by
modifying the local conditions only at the primes where A has supersingular reduc-
tion. See Remark 5.8 for details.

1.2. Notation and Hypotheses. For any field k, let k denote a fixed separable closure
of k and let Gk = Gal(k/k) denote its absolute Galois group. For any positive integer
n, let µµµn denote the nth roots of unity and µµµp∞ = lim−→µµµpm .

Let F be a CM field and let K be its maximal real subfield as in the beginning of the
introduction. For a general Dirichlet character χ : Gal(F/F )→ O×, let L = Lχ denote
the extension of F cut by χ. In this level of generality, we shall assume that

(1.1) the order of χ is prime to p,

and

(1.2) χ(℘) 6= 1 for any prime ℘ of F above p,

and that

(1.3) χ 6= ω,

where ω is the Teichmüller character giving the action of GF on µµµp. We will verify
below that the character ρ = ωψ verifies these hypotheses.

Let R be the set of primes of F that does not contain any prime above p nor any
prime at which χ is ramified. Define N (R) to be the square free products of primes
chosen from R. For ` ∈ R, let F (`) be the maximal p-extension inside the ray class
field of F modulo ` and for η = `1 · · · `s ∈ N (R), set F (η) = F (`1) · · ·F (`s). We write

4As we have also remarked in a previous footnote, Rubin-Stark elements suffice to deduce Theorem C.
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L(η) = L · F (η) for the composite field. We define the collections of finite abelian
extensions of F (resp., of L)

E = {M · F (η) : η ∈ N (R);M ⊂ F∞ is a finite extension of F},
E0 = {M · L(η) : η ∈ N (R);M ⊂ F∞ is a finite extension of F},

Let K0 = lim−→
N∈E0

N and K = lim−→
N∈E

N and set G(X) = Gal(X/F ).

For any non-archimedean prime λ of F , fix a decomposition group Dλ and the iner-
tia subgroup Iλ ⊂ Dλ. Let (−)∨ = Hom(−,Qp/Zp) denote Pontryagin duality functor.
Observe that (−)∨ ⊗O = Hom(−,Φ/O). Bearing this relation in mind, we will write
X∨ for Hom(X,Φ/O) when X is an O-module.

Let F∞ and F cyc be as above. Let F cyc
n denote the unique subextension of F cyc/F

which has degree pn and set Γn = Gal(Fn/F ).
We let GF act on Λ (resp., Λcyc) via the tautological surjection GF � Γ (resp., GF �

Γcyc). For an O-module X of finite type which is endowed with a continuous action of
GF , we endow the Λ-module X ⊗O Λ by the diagonal GF -action.

2. CM ABELIAN VARIETIES AND HECKE CHARACTERS

In this subsection we provide an overview of well-known facts about CM abelian
varieties that we shall need below. They are originally due to Serre-Tate and Shimura.
Let A/F be a principally polarized abelian variety which has CM by F . We assume
that EndF (A) is an order in F whose index inside the maximal order is coprime to p.
Suppose also that the field F contains the reflex field of A.

Let Tp(A) = lim←−A[pn] be the p-adic Tate-module of A. It is a free Zp-module of rank
2g on which GF acts continuously. As explained in the Remark on page 502 of [ST68],
Tp(A) is free of rank one over OF ⊗ Zp =

∏
pOp, where the product is over the primes

of F that lie above p. This yields a decomposition Tp(A) =
⊕

p Tp(A), where each
Tp(A) = lim←−A[pn] is a free Op-module of rank one (and a Zp-module of rank f(p/p),
the inertia degree of p over p). The GF -action on Tp(A) gives rise to a character

ψp : GF −→ O×p .
By [Rib76, §2], ψp is surjective for p large enough; we fix until the end a prime p satis-
fying this condition. We thence obtain a decomposition

Tp(A)⊗Zp Qp =
⊕
p|p

⊕
σ:Fp↪→Qp

V σ
p ,

where V σ
p is the one-dimensional Qp-vector space on which GF acts via the character

ψσp , which is the compositum

GF
ψp−→ O×p

σ−→ Qp.

Fix an embedding j∞ : Q ↪→ C and jp : Q ↪→ Cp. Let J = Σ ∪ Σc be the set of all
embeddings of F into Q. Attached to A, there is a character

ψψψ : AF/F
× −→ F×,

which induces the Grössencharacters

ψτ : AF/F
× ψψψ−→ F×

j∞◦τ−→ C×
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and its p-adic avatars

ψ(p)
τ : AF/F

× ψψψ−→ F×
jp◦τ−→ C×p .

The theory of complex multiplication identifies the two sets {rec◦ψ(p)
τ }τ∈J and {ψσp }p,σ

of p-adic Hecke characters, where rec : AF/F
× → GF is the reciprocity map. Since we

assume that the field F contains the reflex field of (F,Σ), the Hasse-Weil L-function
L(A/F, s) of A then factors into a product of Hecke L-series

L(A/F, s) =
∏
τ∈J

L(ψτ , s).

Fix ε ∈ Σ and identify F with F ε. This choice in turn fixes a prime ℘ ∈ Σp and
σ : F℘ ↪→ Qp in a way that rec ◦ ψ(p)

ε = ψσ℘. Set O := σ(OF℘), let p = ℘σ denote
its unique maximal ideal, F := Frac(O) its fraction field and $ a fixed uniformizer.
Define

(2.1) ψ := ψσ℘ : GF � O×.

Definition 2.1. Let T = O(ψ) = Tp(A) denote the free O-module of rank one on which
GF acts via ψ. Let ωψ denote the character obtained as the compositum of the maps

GF
ψ−→ O× −→ (O/p)×

τ−→ O×

where τ is the Teichmüller lift.
To ease notation we will sometimes write ρ in place of ωψ.

As we explain below in Remark 5.14, the character ρ = ωψ verifies the hypotheses
(1.1), (1.2) and (1.3) for all sufficiently large primes p. For the main applications of this
article towards the (signed) main conjectures for the CM abelian variety A, it will be
sufficient to treat the main conjectures for the Dirichlet character χ = ρ. We expect
that with more work our approach may be generalized to treat the main conjectures
for all Dirichlet characters χ verifying (1.1), (1.2) and (1.3).

Remark 2.2. For an element f ∈ End(A)⊗Z Q = F , let f ι denote its Rosati involution.
Then, f ι = f̄ is the endomorphism given by the complex conjugate of f viewed as an
element of the CM field F . Furthermore, f ι is the adjoint of f under the Weil pairing
on A[pn] for every n. This fact in turn shows that the dual of the submodule A[pn]
(under the restriction of the Weil pairing) is the submodule A[p̄n]. Thus T is self-dual
(in the sense that T ∼= Hom(T,Zp(1)) as GF -modules) if the prime p+ := p ∩K below
p is inert in F/K.

3. SEMI-LOCAL PREPARATION

LetM = M0 ·F (η) be a member of the collection E, whereM0 is a finite subextension
of F∞/F . Set ∆M = Gal(M/F ), δM = |∆M | and ΛM = O[∆M ].

Let X be any O[[GF ]]-module which is free of rank d as an O-module. Suppose in
addition that X satisfies the following hypothesis:

(H.p1) H2(F℘, X) = 0 = H2 (F℘,HomO(X,O(1))), for any prime ℘ of F above p.
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Lemma 3.1. Suppose X is as above. Let M ∈ E be an extension of F and let P be a prime of
M lying above p. Then

H2(MP, X) = 0 = H2 (MP,HomO(X,O(1))) .

Proof. Let ℘ be the prime of F lying below P and set DP = Gal(MP/F℘). Then either
DP is trivial and in this case Lemma follows from (H.p1), or otherwise DP is a non-
trivial p-group. Then,

#H0(MP, X
∗[$]) = #H0

(
DP, (H

0(MP, X
∗[$])

)
≡ #H0(F℘, X

∗[$]) ≡ 1 mod p

where the last equality holds thanks to (H.p1) and local duality. This shows that
H0(MP, X

∗) = 0 and thus by local duality that H2(MP, X) = 0, as desired. The second
assertion is proved in an identical manner. �

Definition 3.2. For j = 0, 1, 2 define the semi-local cohomology groups

Hj(Mp, X) :=
⊕
q|p

Hj(Mq, X), H1
f (Mp, X) :=

⊕
q|p

H1
f (Mq, X),

and let
locp : H1(M,X) −→ H1(Mp, X)

denote the localization map.

Proposition 3.3. Suppose (H.p1) holds true.

(i) The corestriction map

cor : H1(Mp, X) −→ H1(Fp, X)

is surjective.
(ii) the ΛM -module H1(Mp, X) is free of rank 2g · d.

(iii) The Λ-module H1(Fp, X ⊗ Λ) is free of rank 2g · d.
(iv) The O[[G(K)]]-module lim←−

M∈E
H1(Mp, X) is free of rank 2g · d, where the inverse limits

are with respect to corestriction maps.

Proof. (iii) and (iv) follow at once from (i) and (ii). Both (i) and (ii) are essentially
proved in [Büy13b, §2.1]. �

Let χ be a general Dirichlet character satisfying (1.1), (1.2) and (1.3) as before. Then
the hypothesis (H.p1) holds true for X = Tχ. In particular, the conclusions of Proposi-
tion 3.3 hold true for X = Tχ. Set Tχ := Tχ ⊗ Λ.

Recall that T = O(ψ) = Tp(A) and let T := T ⊗Λ and Tcyc := T ⊗Λcyc. Then we have
T ∼= Tρ ⊗ 〈ψ−1〉 (where ρ = ωψ is the Dirichlet character given as in Definition 2.1). We
have the following twisting isomorphisms (c.f. [Rub00, Chapter VI])

H1(X,Tρ)⊗ 〈ψ−1〉 ∼−→ H1(X,O(1)⊗ ψ−1 ⊗ Λ)(3.1)

for X = F or Fp.

Remark 3.4. As explained in Remark 2.2, the GF -representation T is self-dual under
our running assumptions and therefore

O(1)⊗ ψ−1 ∼= Hom(T,O(1)) ∼= T
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and the twisting isomorphisms (3.1) yields

(3.2) H1(X,Tρ)⊗ 〈ψ−1〉 ∼−→ H1(X,T)

for X = F or Fp. By slight abuse, we denote any of the twisting isomorphisms in (3.2)
by tw.

4. RUBIN-STARK ELEMENT EULER SYSTEM OF RANK g

In this section, we review Rubin’s [Rub96] integral refinement of Stark’s conjectures.
For the rest of this paper, we assume the truth of the Rubin-Stark conjecture [Rub96,
Conjecture B′], whose content we explain below.

Let χ be a general Dirichlet character satisfying (1.1), (1.2) and (1.3) and let L denote
the field cut by χ. Recall the definitions of the collections of extensions E0 and E from
Section 1.2. Fix forever a finite set S of places of F that does not contain any prime
above p, but contains the set of infinite places S∞ and all primes λ - p at which χ is
ramified. Assume that |S| ≥ g + 1. For each K ∈ E, let

SK = {places of K that lie above S} ∪ {places of K at which K/F is ramified}
be a set of places of K. Let O×K,SK denote the SK units of K. Set ∆K := Gal(K/F ) and
δK = |Gal(K/F )|.

Definition 4.1. Let G be any finite group and let X be any O[G]-module which is of
finite type over O. Following [Rub96], we define for any integer r ≥ 0 the submodule
∧r0X ⊂ Φ⊗ ∧rX by setting

∧r0X = {x ∈ Φ⊗ ∧rX : (ϕ1 ∧ · · · ∧ ϕr)(x) ∈ O[G]

for every ϕ1, · · · , ϕr ∈ Hom(X,O[G])} .

We also let ∧rX denote the isomorphic image of ∧rX under the map j : ∧rX →
Φ⊗ ∧rX .

Example 4.2. If X is a free O[G]-module then ∧r0X = ∧rX ,

Conjecture B′ of [Rub96] predicts the existence of certain elements

ε̃K,SK ∈ ΛK,SK ⊂
1

δK
∧gO×K,SK

where the module ΛK,SK is defined in [Rub96, §2.1] and has the property that for any
homomorphism

θ̃ ∈ HomQp[∆K](∧gÔ×K,SK ⊗Qp, Ô×K,SK ⊗Qp)

which is induced from a homomorphism

θ ∈ HomZp[∆K](∧gÔ×K,SK , Ô
×
K,SK),

one has θ̃(ΛK,SK ) ⊂ Ô×K,SK . We remark that the g-th exterior power ∧gÔ×K,SK (and
all other exterior powers which appear below) is taken in the category of Zp[∆K]-
modules.

Remark 4.3. Rubin’s conjecture predicts that the elements ε̃K,SK should in fact lie
inside the module 1

δK
∧gO×K,SK,T , where T = TK is a finite set of primes disjoint from SK,

chosen in a way that the groupO×K,SK,T of SK-units which are congruent to 1 modulo all
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the primes in T is torsion-free. One can safely ignore T ’s (as far as we are concerned
in this paper) by simply setting TL := {q1, q2} to consist of two primes of L which
verify:

• The residue characteristics of q1 and q2 are distinct.
• (Nq1 − 1, p) = (Nq2 − 1, p) = 1.

One may then use [Rub96, §1.1] to show that the p-part of the leading coefficient of

the modified zeta-function (at s = 0) is unaffected and also that Ô×L,SL,TL = Ô×L,SL .
We note that in [Büy09] one could choose the set TL to be a singleton since one only

deals with totally real fields in loc.cit.

Recall that F cyc denotes the cyclotomic Zp-extension of F and for m ∈ Z+, F cyc
m is the

unique subextension of F of degree pm.

Definition 4.4. For K = M · L(η) ∈ E0 (or K = M · F (η) ∈ E), where η ∈ N (R) and
M ⊂ F∞ a finite extension of F , choosem ∈ Z+ so thatM 6⊂ F

cyc
m and setMm = M ·F cyc

m ,
Km = K ·Mm. Define

εK,SK = N⊗g
Km/K

(
ε̃Km,SKm

)
where N⊗g

Km/K
denotes the norm map induced on the g-th exterior power. It follows

from [Rub96, Proposition 6.1] that εK,SK is well-defined.

As we have fixed S (therefore SK as well), we will often drop S or SK from the
notation and denote εK,SK by εK; or sometimes use S instead of SK and denote OK,SK
by OK,S .

For any number field K, Kummer theory gives a canonical isomorphism

H1(K,O(1)) ∼= K̂× ⊗Zp O :=

(
lim←−
n

K×/(K×)p
n

)

)
⊗Zp O.

Under this identification, we view each εK,SK as an element of 1
δK
∧g H1(K,O(1)). The

distribution relation satisfied by the Rubin-Stark elements ([Rub96, Proposition 6.1])
shows that the collection {εK,SK}K∈K is an Euler system of rank g in the sense of [PR98],
as appropriately generalized in [Büy10, Definition 3.1] to allow denominators.

4.1. Twisting. Let Tχ := O(1) ⊗ χ−1. We may twist the collection {εK,SK}K∈E we have
obtained above (which is a rank-g Euler system for the collection O(1)), following
the formalism of [Rub00, §II.4] (as done so in [Büy13b, §3.1]). We do not include the
details here and note only the following identification (for every K ∈ E)

H1(K, Tχ)
∼−→ LK×,χ

obtained using the inflation-restriction sequence and Kummer theory.

Let εχK ∈ ∧gH1(K, Tχ) denote the twisted element. Then the collection C(g)
R-S :=

{εχK}K∈E is a rank-g Euler system for Tχ (in the sense of [Büy10, Definition 3.1]) and
we call it the Rubin-Stark element Euler system of rank g.

Remark 4.5. Let K be any field contained in the collection C. When χ verifies (1.1),
Proposition 3.3 and Example 4.2 shows that

locp(ε
χ
K) ∈ ∧gH1(Kp, Tχ)
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where the exterior product is taken in the category of O[Gal(K/F )]-modules. We will
simply write locp(ε

χ
K) in place of j−1(locp(ε

χ
K)) ∈ ∧gH1(Kp, Tχ).

Definition 4.6. We define

locp(ε
χ
F∞

) = {locp(ε
χ
M)} ∈ lim←−∧

gH1(Mp, Tχ) = ∧g lim←−H
1(Mp, Tχ) = ∧gH1(Fp,Tχ)

to be the tower of Rubin-Stark elements along F∞. Here the inverse limit is taken over
all finite subextensions of F∞/F and the second equality holds thanks to the fact that
each module H1(Mp, Tχ) is free as an O[Gal(M/F )]-module.

Definition 4.7. In what follows, we denote a generic Zp-power extension of F that
is disjoint from F cyc by Fo. We further write Γo = Gal(Fo/F ). We fix a basis (as a
Zp-module) {γ1, · · · , γs} of Γo (where s ≤ g + d is a non-negative integer) and let γcyc

denote a fixed topological generator of Γcyc. We set Λo = O[[Γo]].
Given a positive integer m and an s-tuple of positive integers n = (n1, · · · , ns) we

let Fcyc ⊂ Fn ⊂ F∞ denote the fixed field of Γp
n

o := 〈γp
n1

1 〉 × · · · × 〈γp
ns

s 〉 and let F ⊂
Fm,n ⊂ Fn be the fixed field of Γp

m

cyc. Set Γ(m) = Γcyc/Γ
pm

cyc and Γ(n) = Γo/Γ
pn

o . We write
F(m) = Fm,0 ⊂ F cyc (where 0 = (0, · · · , 0)) and F (n) = F0,n ⊂ Fo. Observe that Fm,n is
the joint of F(m) and F (n).

4.2. Perrin-Riou-Stark Conjecture and an explicit reciprocity conjecture. We shall
use the notation we have set in Definition 4.7 throughout this subsection. Let χ be a
Dirichlet character satisfying (1.1), (1.2) and (1.3).

Definition 4.8. The canonical Selmer structure Fcan is given by the choice of local condi-
tions H1

Fcan
(Fq,Tχ) = H1(Fq,Tχ), for all primes q of F . For every finite sub-extension

F ⊂ M ⊂ F∞ , we define the the propagation of Fcan to the GM -representation Tχ by
setting (for every prime q of F )

H1
Fcan

(Mq, Tχ) := im

(
H1(Fq,Tχ) = lim←−

F⊂N⊂F∞
H1(Nq, Tχ) −→ H1(Mq, Tχ)

)
.

It is not hard to see (for the first we use Proposition 3.3(i) and for the second, Corollary
B.3.4 and Lemma 1.3.5(iii) of [Rub00]) that:

• For every q | p we have H1
Fcan

(Mq, Tχ) = H1(Mq, Tχ).
• For every q - p we have H1

Fcan
(Mq, Tχ) = H1

f (Mq, Tχ), where

H1
f (Mq, Tχ) := ker

(
H1(Mq, Tχ) −→ H1(Mur

q , Tχ ⊗Qp)
)

and Mur
q is the maximal unramified extension of Mq.

Example 4.9. For a general Dirichlet character χ of F , we may identify H1(F, Tχ)
with L×,χ and similarly, for any rational prime `, the semi-local cohomology group
H1(F`, Tχ) with (L⊗Q`)

×,χ by Kummer theory.
Set U` = (OL ⊗ Z`)×,χ. It follows from [Rub00, §1.6.C and Prop. B.3.3] along with

the proof of Prop. 3.2.6 of loc.cit. that H1
Fcan

(F`, Tχ) = U`, for every rational prime `.
Note that this holds true even for ` = p, thanks to the our running assumption (1.2).
We therefore conclude that H1

Fcan
(F, Tχ) = O×,χL . It follows from [NSW08, §8.6.12] that

the O-module O×,χL is free of rank g, since χ is not the Teichmüller character.
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Similarly, H1
F∗can

(F, T ∗χ)∨ ∼= Cl(L)χ.

The following is Lemme 4 of Section 1.3 in [PR84]:

Lemma 4.10 (Perrin-Riou). Let L2/F be an extension such that G := Gal(L2/F ) ∼= Zs+1
p

and L1/F a subextension of L2 with H := Gal(L2/L1) ∼= Zp and G/H ∼= Zsp. For X = G
or G/H , let Λ(X) stand for the Iwasawa algebra O[[X]]. Let πH : Λ(G) → Λ(G/H) denote
the natural projection and let γH be a fixed topological generator of H . Suppose that M is a
torsion Λ(G)-module. Set MH := M ⊗ Λ(G/H) ∼= M/(γH − 1)M and MH := M [γH − 1].

(i) MH is Λ(G/H)-torsion iff πH(charΛ(G)(M)) 6= 0 iff (γH−1) is prime to charΛ(G)(M).
(ii) If MH is Λ(G/H)-torsion, then MH is a pseudo-null Λ(G)-module and a torsion

Λ(G/H)-module. In this case

πH(charΛ(G)(M)) · charΛ(G/H)(M
H) = charΛ(G/H)(MH) .

Lemma 4.11. Suppose that the weak Leopoldt conjecture holds true for L. Then the Λcyc-
module H1

Fcan
(F, Tχ ⊗ Λcyc) and the Λ-module H1

Fcan
(F,Tχ) are both free of rank g.

Proof. The fact thatH1
Fcan

(F, Tχ⊗Λcyc) is a Λcyc-module of rank g is a direct consequence
of the weak Leopoldt conjecture for L. Let γcyc be a topological generator of Γcyc. To
see that the module H1

Fcan
(F, Tχ ⊗ Λcyc) is in fact free, observe that the augmentation

map induces an injective map

H1
Fcan

(F, Tχ ⊗ Λcyc)/(γcyc − 1) ↪→ H1
Fcan

(F, Tχ)

by the discussion in §.1.6.C, Proposition B.3.3 along with the proof of Proposition 3.2.6
of [Rub00]. Note that in order to compare local conditions at p, we rely on our assump-
tion (1.2). This and an easy extension of Dirichlet’s unit theorem shows by Naka-
maya’s lemma that the Λcyc-module H1

Fcan
(F, Tχ ⊗Λcyc) may be generated by at most g

elements. Using the fact that this module is torsion free, it is not hard to see that these
generators cannot satisfy a non-trivial Λcyc-linear relation. This completes the proof of
the assertion regarding the module H1

Fcan
(F, Tχ ⊗ Λcyc).

Let now Fo/F be any Zp-power extension as in Definition 4.7. The notation we use
here also follows our set up there. Let F† = F cycFo , Γ† = Gal(F†/F ) and Λ† = O[[Γ†]].
Let R̃Γf,Iw(F†/F, T ) be Nekovář’s Selmer complex associated to Tχ⊗Λ†, which is given
by the Greenberg local conditions determined by the choice U+

v = Tχ for every prime
v of F above p. As we have assumed (1.2), it follows from [Nek06, Lemma 9.6.3] (and
[Nek06, Proposition 8.8.6] used in order to pass to limit) that

H̃1
f,Iw(F†/F, Tχ)

∼−→ H1
Fcan

(F, Tχ ⊗ Λ†)

where H̃1
f,Iw denotes the cohomology of the Selmer complex in degree 1. Under the

hypothesis (1.2), Nekovář proved that the Selmer complex may be represented by
a perfect complex concentrated in degrees 1 and 2. In particular, its cohomology
H1
Fcan

(F, Tχ ⊗ Λ†) in degree 1 is a projective (hence free) Λ†-module. By Nakayama’s
lemma, it may be generated by at most g elements. We will show inductively (on the
Krull dimension of Λ†) below that it cannot admit a set of generators of size strictly
smaller than g. This will conclude the proof of our lemma.

Let F ′o ⊂ Fo be a sub-Zp-power extension of F that is disjoint from F cyc and such that
Gal(Fo/F ′o) ∼= Zp. Let γ† be a topological generator of Gal(Fo/F ′o). Let F ′† = F ′o F

cyc.
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Set Γ′† = Gal(F ′†/F ) and Λ′† = O[[Γ′†]]. Suppose that we have already proved that the
Λ′†-module H̃1

f,Iw(F ′†/F, Tχ) is free of rank g. Then:

coker
(
H̃1
f,Iw(F†/F, Tχ) −→ H̃1

f,Iw(F ′∗/F , Tχ)
)
∼= H̃2

f,Iw(F†/F, Tχ)[γ† − 1](4.1)

∼= H1
F∗can

(F, (Tχ ⊗ Λ†)
∗)∨[γ† − 1]

Here the first isomorphism follows from Nekovář’s control theorem [Nek06, 8.10.1] ;
second from his duality theorem [Nek06, 8.9.6.2]. One may identify the Λ†-module
H1
F∗can

(F, (Tχ ⊗ Λ†)
∗)∨ with lim←−

L⊂M⊂LF†

Cl(M)χ and argue using Lemma 4.10 that the cok-

ernel module (4.1) is Λ†-torsion. Therefore, the Λ†-module H1
Fcan

(F, T ⊗ Λ†) cannot be
generated by less than g elements. �

Proposition 4.12. (i) coker
(
H1(F, Tχ ⊗ Λcyc)→ H1

Fcan
(F(m), Tχ)

)
is finite.

(ii) The O[Γ(m)]-module H1
Fcan

(F(m), Tχ) is free of rank g.
(iii) The O[Γ(m) × Γ(n)]-module H1

Fcan
(F(m,n), Tχ) is free of rank g.

Proof. We argue as in Lemma 4.11. By Nekovář’s control theorem

coker
(
H1(F, Tχ ⊗ Λcyc)→ H1

Fcan
(F(m), Tχ)

) ∼= H̃2
f,Iw(F cyc/F, Tχ)[γp

m

cyc − 1]

and H̃2
f,Iw(F cyc/F, Tχ) ∼= H1

F∗can
(F, (Tχ ⊗ Λcyc)

∗)∨. Since

H1
F∗can

(F, (Tχ ⊗ Λcyc)
∗)∨/(γp

m

cyc − 1) ∼= H1
F∗can

(F(m), T
∗
χ)∨ ∼= Cl(LF(m))

χ

is finite, the characteristic ideal of the torsion Λcyc-module H1
F∗can

(F, (Tχ ⊗ Λcyc)
∗)∨ is

prime to γpmcyc− 1, and by the structure theorem for finitely generated Λcyc-modules we
see that H1

F∗can
(F, (Tχ ⊗ Λcyc)

∗)∨[γp
m

cyc − 1] is finite, concluding the proof of (i).
The argument above also shows that coker(H1(F, Tχ ⊗ Λcyc) → H1

Fcan
(F, Tχ)) is fi-

nite, which in turn implies that coker
(
H1(F(m), Tχ)

pr−→ H1
Fcan

(F, Tχ)
)

is finite as well.
We therefore infer that the image of pr (induced by projection modulo γcyc − 1) is a
free O-module of rank g. It follows by Nakayama’s lemma that the O[Γ(m)]-module
H1(F(m), Tχ) may be generated by at most g elements, say by {v1, · · · , vg}. On the other
hand, it follows from the first part that H1(F(m), Tχ) contains a free O[Γ(m)]-module of
rank g (isomorphic image of the free module H1(F, Tχ ⊗ Λcyc)/(γ

pm

cyc − 1)), say with
basis {y1, · · · , yg}. One may easily verify that any non-trivial O[Γ(m)]-linear relation
{v1, · · · , vg} would yield a non-trivial O[Γ(m)]-linear relation of {y1, · · · , yg}, which is
impossible. This shows that {v1, · · · , vg} is indeed a basis and (ii) follows.

The proof of (iii) follows by induction on the Krull dimension s + 1 of Λo (the base
case being (ii)). We indicate the main steps:

• Suppose we have verified for the (s− 1)-tuple n′ = (n1, · · · , ns−1) and the non-
negative integer m that the Λ(m,n′) := O[Γ(m)×Γ(n′)]-module H1

Fcan
(F(m,n′), Tχ) is

free of rank g. Let Γs be the subgroup of Γo topologically generated by γs and
set Λs = O[[Γs]]. Using Nakayama’s Lemma along with Nekovář’s descent as
above, prove that the Λ(m,n′)[[Γs]]-module H1

Fcan
(F(m,n′), Tχ ⊗ Λs) is free of rank

g as well.
• Use once again Nekovář’s descent and finiteness of the ideal class groups to

show that coker(H1
Fcan

(F(m,n′), Tχ ⊗ Λs) → H1
Fcan

(F(m,n), Tχ)) is finite. Conclude
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thatH1
Fcan

(F(m,n), Tχ)) contains a free O[Γ(m)×Γ(n)]-module of rank g (with finite
index in H1

Fcan
(Fm,n, Tχ)), say again with basis {y1, · · · , yg}.

• Furthermore, it follows by Nakayama’s lemma thatH1
Fcan

(Fm,n, Tχ) may be gen-
erated by at most g elements, say by {v1, · · · , vg}. It can be verified that a non-
trivial linear relation of {v1, · · · , vg} would yield a non-trivial relation among
{y1, · · · , yg}, concluding the proof that {v1, · · · , vg} is a basis of H1

Fcan
(Fm,n, Tχ).

�

Henceforth we shall take s in Definition 4.7 to be g + 1, so that Fo F cyc = F∞. In
particular, note that all tuples n will consist of g + 1 non-negative integers.

Remark 4.13. By Proposition 4.12(iii) it follows that

εχFm,n ∈ ∧
gH1
Fcan

(Fm,n, Tχ) ,

since we have ∧g0H1
Fcan

(Fm,n, Tχ) = ∧gH1
Fcan

(Fm,n, Tχ) by Example 4.2.

Inspired by [PR98, Definition 1.2.2], we propose the following strengthening (along
the tower F∞/F ) of the Rubin-Stark conjectures:

Conjecture 4.14 (Perrin-Riou-Stark conjecture). There exists an element

Sχ
∞ = S∞,1 ∧ · · · ∧S∞,g ∈ ∧gH1(F,Tχ)

(where the exterior product is evaluated in the category of Λ-modules) such that for every
subextension F ⊂ M = Fm,n ⊂ F∞ as above, the image of S∞ under the natural projection
to ∧gH1

Fcan
(M,Tχ) is εχM , the χ-isotypic component of the Rubin-Stark element.

Assuming the truth of the Perrin-Riou-Stark conjecture, we set

Sχ
cyc = Scyc,1 ∧ · · · ∧Scyc,g ∈ ∧gH1(F, Tχ ⊗ Λcyc)

to denote the image of S∞.

Remark 4.15. If there is a chain of Zp-power extensions

F = F0 ⊂ F1 ⊂ · · ·Fg+1 = F∞

for which we have Gal(Fj/Fj−1) ∼= Zp, such that for any j = 1, · · · g + 1 the mod-
ule lim←−L⊂M⊂LFj Cl(M)χ has no O[[Gal(Gal(Fj/F ))]]-pseudo-null submodules, then the
Perrin-Riou-Stark conjecture would have been trivial. Indeed in that case, it follows
that for non-negative integers m ≥ m′ and g-tuples of non-negative integers n =
(n1, · · · , ng), n′ = (n′1, · · · , n′g) with ni ≥ n′i for every i, the maps

H1
Fcan

(Fm,n, Tχ) −→ H1
Fcan

(Fm′,n′ , Tχ)

( and ni ≥ n′i , 1 ≤ i ≤ g) are surjective and using Proposition 4.12 we conclude that

lim←−∧
gH1
Fcan

(Fm,n, Tχ) = ∧g lim←−H
1
Fcan

(Fm,n, Tχ) = ∧gH1(F,Tχ) .

In our companion article [BL14, Conjecture 3.12] we have predicted a certain form
of an explicit reciprocity conjecture (which in turn itself is based on Perrin-Riou’s con-
jectures on p-adic L-functions) for a class of motives. We shall recall the explicit reci-
procity conjecture of loc.cit. adapted to the setting of our current article, where the
motive in question is that of an Grössencharacter associated to a CM abelian variety.
In particular, we conjecture that the Kolyvagin determinants verifying Conjecture 3.10
of loc.cit. should come from Rubin-Stark elements via the recipe in Appendix B.
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Definition 4.16. Let us now choose our Dirichlet character χ to be ρ = ωψ. We assume
the truth of the Perrin-Riou-Stark Conjecture 4.14. Let U∞ ⊂ ∧gH1

Fcan
(F,Tρ) denote the

Λ-module generated by the Perrin-Riou-Stark element Sρ
∞. Let Uψ∞ be the image of U

under the twisting isomorphism

(4.2) ∧gH1
Fcan

(F,Tρ)⊗ 〈ψ−1〉 ∼−→ ∧gH1
Fcan

(F,T).

The module Uψ∞ is called the module of ψ-twisted Perrin-Riou-Stark elements.

For any unramified extension K/Qp containing a completion of F (at a prime above
p), let DK(T ) denote the Dieudonné module and

[∼,∼] : DK(T )× DK (Hom(T,Zp(1))) −→ Zp

denote the natural pairing. As explained in Appendix C, the Dieudonné module
DK(T ) is endowed with a natural O-module structure, respecting the action of ϕ and
the filtration. For q|p a prime of F above p, let Bq = {vq,i}f(q/p)

i=1 be an O-basis of DFq(T ).
The dual basis of B is then denoted by B′ =

{
v′q,i
}f(q/p)

i=1
.

Definition 4.17. Given c = c1 ∧ · · · ∧ cg ∈ ∧gH1(F,Tcyc), θ an even Dirichlet character
of conductor pn and for I ∈ I, we write MI

θ(c) for the g × g matrix whose entries are

given by

[∑
σ∈Γn

θ(σ) exp∗n (locp(ci)σ) , v′p,j

]
for 1 ≤ i ≤ g and j ∈ Ip.

We conjecture that a generator of the module of ψ-twisted Perrin-Riou-Stark ele-
ments verify the following explicit reciprocity conjecture of [BL14] (which in turn is
based on a conjecture of Perrin-Riou):

Conjecture 4.18. There exists a generator ξξξ of Uψ∞ such that for every n ∈ Z+ and a primitive
character θ : Γn → µµµp∞ we have

det
(
MI

θ(ξξξcyc)
)

= L{p}(ψ, θ
−1, 1) ·

ΩI
ψθ−1,p

ΩI
ψθ−1

where ξξξcyc = ξ1 ∧ · · · ∧ ξg ∈ ∧gH1(F,Tcyc) is the image of ξξξ, L{p}(ψ, θ−1, s) denotes the com-
plex L-function L{p}(ψ, θ−1, s) with the Euler factor at p removed and ΩI

ψθ−1 (resp., ΩI
ψθ−1,p)

is Deligne’s complex (resp., Perrin-Riou’s p-adic) period (see [BL14, Definition 3.5]). Fur-
thermore, there exists a Dirichlet character θ with L(ψ, θ−1, 1) 6= 0.

5. INTEGRAL IWASAWA THEORY FOR SUPERSINGULAR CM ABELIAN VARIETIES

In this section we apply the integral Iwasawa theory studied extensively in [BL14]
to the representation T = Tp(A). For notational simplicity, we shall write R in place of
Λcyc.

Let q (which may or may not coincide with p) be a prime of F that lies above p.
We write Dq(T ) for the Dieudonné module of the representation T |GFq and we denote
⊕q|pDq(T ) by Dp(T ).

Lemma 5.1. The inertia degree f(p/p) is even.
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Proof. Let Gp = lim−→A[pn]. Since A is supersingular at p, this is isogenous to G⊕rp1,1 for
some integer rp, where G1,1 denotes the p-divisible group of a supersingular elliptic
curve, which has height 2. The height of Gp is given by f(p/p), which should equal to
2rp. Hence the result. �

Lemma 5.2. The Hodge-Tate weights of T |GFq are 0 and 1. The eigenvalues of ϕ on Dq(Tp(A))

are of the form ζ × p− 1
2 where ζ is a root of unity.

Proof. Since the Hodge-Tate weights of Tp(A) are 0 and 1 (with multiplicity g) and T is
a subrepresentation of Tp(A), the first part of the lemma follows. The second part of
the lemma is a theorem of Manin-Oort. �

In particular, the representation T |GFq satisfies the hypotheses (H.F.-L.) and (H.S.) in
[BL14, §2.1]. As explained in Appendix C, we obtain an R-equivariant Coleman map

Colqp : H1(Fq,Tcyc) −→ R[Fq:Qp] .

Note that in [BL14], we have defined a Coleman map on lim←−H
1(Fq(µµµpn), T ), so our

Coleman map here is in fact the isotypic component of that in op. cit corresponding
to the trivial character on Gal(Fq(µµµp)/Fq), which is equivalent to taking Gal(F (µµµp)/F )-
invariant.

Definition 5.3. Define the semi-local Coleman map by setting

Colp :=
⊕
q|p

Colqp : H1(Fp,Tcyc) −→ R2g .

For 1 ≤ i ≤ 2g, we define
Colp,i : H1(Fp,Tcyc) −→ R

to be the projection of Colp to the i-th component of R2g.

Definition 5.4. Let I be the set of subsets of {1, . . . , 2g} that are of size g. For any I ∈ I
we set

ColIp :=
⊕
i∈I

Colp,i : H1(Fp,Tcyc) −→ Rg .

When no confusion may arise, we shall suppress I and p from the notation and simply
write C in place of ColIp.

Remark 5.5. By [BL14, Corollary 2.22], the image of ColIp is pseudo-isomorphic to a
free R-module of rank g. Furthermore, if we choose a strongly admissible basis (see
[BL14, Definition 3.2 and Proposition 3.3], then ColIp is in fact pseudo-surjective.

Definition 5.6. Let Z be a free R-submodule of rank g contained in the target Rg of the
Coleman map ColIp and that contains the image of ColIp with finite index. The proof of
[BL14, Corollary 2.22] shows that such Z exists.

Let Jq denote the set of embeddings F ↪→ Fq for each q|p. Fix a bijection

b : {1, · · · , 2g} −→
∐
q|p

Jq .

For I ∈ I, set Iq := b(I) ∩ Jq.
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Definition 5.7. For each I ∈ I, we define

V
cyc
I :=

⋂
i∈I

ker Colp,i = kerC.

The orthogonal complement of Vcyc
I under the pairing

H1(Fp, T )×H1(F cyc
p , A∨[p∞])→ Qp/Zp

is denoted by V
cyc,⊥
I .

This allows us to define the I-Selmer group

(5.1) SelIp(A
∨/F cyc) := ker

(
Selp(A

∨/F cyc) −→ H1(F
cyc
p , A∨[p∞])

V
cyc,⊥
I

)
.

As explained in [BL14, Appendix D], when A is an elliptic curve over Q with good
supersingular reduction at p, on choosing an appropriate basis for the Dieudonné
module, these Selmer groups coincide with Kobayashi’s ±-Selmer groups defined in
[Kob03].

Remark 5.8. Note that our assumption (H.K.) ensures that A is supersingular at all
primes above p by [Sug12]. In fact, we could define I-Selmer groups in the following
way if A is ordinary at some primes above p. Let Ss be the set of primes above p
where A has supersingular reduction and write gs =

∑
q∈Ss [Fq : Qp], which is even by

Lemma 5.1. For each q ∈ Ss, we have the Coleman map

Colsp : ⊕q∈SsH
1(Fq,Tcyc) −→ Rgs

as above. For every subset I of {1, . . . , gs} of size gs/2, we can define V cyc
I to be

∩i∈I ker Colp,i as before. Our Selmer group is then

SelIp(A
∨/F cyc) := ker

(
Selp(A

∨/F cyc) −→ ⊕q∈SsH
1(F

cyc
q , A∨[p∞])

V
cyc,⊥
I

)
.

Lemma 5.9. The R-module Vcyc
I is free of rank g.

Proof. Consider the following diagram with exact rows:

0 // V
cyc
I

pr
��

// H1(Fp,Tcyc)

pr
��

C // Z

pr
��

0 // ker (CF ) // H1(Fp, T )
CF // Z

Here Z = Z ⊗ Λ/Acyc where Acyc is the augmentation ideal ker(R → O) and pr are
the natural projections. Finally, the map CF is the map C modulo Acyc. Note that the
middle vertical map is surjective by Proposition 3.3(i) and the last map is surjective by
definition.

It follows from Remark 5.5 that the cokernel of CF is finite. Since H1(Fp, T ) is free
of rank 2g, it follows that ker (CF ) is a free O-module of rank g. By Nakayama’s
lemma, this shows that the R-module V

cyc
I may be generated by g elements. Using the

fact that the R-module V
cyc
I is torsion-free (being a submodule of the free R-module
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H1(Fp,Tcyc)) one may easily prove that these generators cannot satisfy a non-trivial
R-linear relation. �

Choose a free Λ-module Z̃ of rank g and an inclusion ιZ : Z̃ ↪→ Λg so that the
diagram

Z̃

⊗ΛR
��

� � ιZ // Λg

⊗ΛR
��

Z
⊆
// Rg

commutes. (This is possible by Nakayama’s lemma.)

Proposition 5.10. There is a (non-canonical) map C̃ : H1(Fp,T) −→ Z̃ so that the following
diagram commutes:

H1(Fp,T)

��

C̃ // Z̃

��
H1(Fp,Tcyc)

C // Z

where the (surjective) vertical arrows are induced from Γ � Γcyc.

We shall denote the composite map H1(Fp,T)
C̃−→ Z̃

ιZ
↪→ Λg also by C̃.

Proof. This follows from using the following observation iteratively: LetR be any local
ring and let I ⊂ R be any principal ideal. Let Y be a freeR-module of finite rank. Then
for any positive integer t, the kernel of the composition of the maps

HomR

(
Y,Rt

)
−→ HomR

(
Y, (R/I)t

) ∼−→ HomR/I

(
Y/I, (R/I)t

)
is I ·HomR (Y,Rt). �

Definition 5.11. Set VI := ker
(
C̃
)

. Recall the Dirichlet character ρ = ωψ and let H1
I ⊂

H1(Fp,Tρ) be the Λ-submodule corresponding to VI under the twisting isomorphism
(3.2). For any finite extension F ⊂ K ⊂ F∞ , let H1

I,K denote the image of H1
I under

the (surjective) projection

H1(Fp,Tρ) −→ H1(Kp, Tρ) .

Lemma 5.12. The Λ-moduleH1
I is free of rank g.

Proof. Note that it suffices to verify the similar statement for VI . Proof of that, how-
ever, is identical to the proof of Lemma 5.9 and follows by considering the diagram

0 // VI

pr
��

// H1(Fp,T)

pr
��

C̃ // Z̃

pr

��
0 // V

cyc
I

// H1(Fp,Tcyc)
C // Z

where pr now stands for reduction modulo the ideal ker(Λ→ R). �
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Definition 5.13. Let C̃ρ denote the compositum of the maps

C̃ρ : H1(Fp,Tρ)
tw−→ H1(Fp,T)

C̃−→ Λg.

Remark 5.14. Note that we have T ∼= Tp(A) and T ∗ ∼= A∨[$∞]. Fix a prime v of F above
p. Since we assumed that A is supersingular at v, it follows that the reduced variety
has no p-torsion over any finite field of characteristic p. Thus the p-torsion subgroup of
A(Fv) should come from the formal group Â of A. The formal group Â is defined over
an unramified extension Fv and thence the extension Fv(Â[p])/Fv is totally ramified.
By local class field theory, this shows that the hypothesis (1.2) holds true for χ = ρ.

The hypothesis (1.3) holds true for ρ as the p-adic Hecke character ψ is surjective by
our choice of the prime p, f(p/p) is even by Lemma 5.1 and hence the order of ρ = ωψ
is at least p2 − 1.

6. MODIFIED SELMER STRUCTURES

In this section we introduce a variety of Selmer structures we shall analyze in what
follows so as to prove the main conjectures for F∞/F and the cyclotomic main con-
jectures for a CM abelian variety at a supersingular prime. We shall be working with
two Galois representations (which will be ultimately related): First in Section 6.1 with
the Galois representation Tχ ⊗ Λ and later in Section 6.2 with Tρ and Tcyc. Those
Selmer structures introduced in Section 6.2 will be used to obtain upper bounds for
our Selmer groups, whereas those introduced in Section 6.1 will be used in order to
prove the CM main conjecture and to prove (using the rigidity of Λ-adic Kolyvagin
systems) that the upper bounds obtained for CM abelian varieties are indeed sharp in
favourable situations.

6.1. Modified Selmer structures for Dirichlet characters. In this section we shall be
working with the Galois representation Tχ. The hypotheses (1.1), (1.2) and (1.3) on χ
are in effect. Recall the collection E of extensions of F , introduced in Section 1.2.

Definition 6.1. LetR be any ring andM be anyR-module. For any submoduleN ⊂M ,
the R-saturation of N in M is the submodule N sat = φ−1φ(N) ⊂ M , where φ : M →
M ⊗ Frac(R) is the natural map and Frac(R) is the total ring of fractions of R.

Lemma 6.2. The O-module O×,χL is free of rank g.

Proof. This follows from [NSW08, §8.6.12], along with our assumption that χ is differ-
ent from the Teichmüller character ω. �

Definition 6.3.

(i) Let BF := locp(O×,χL )sat be the O-saturation of locp(O×,χL ) in H1(Fp, Tχ). Note
that the O-module BF is a direct summand of the free module H1(Mp, Tχ). Let
the rank of the O-module BF be g − d with d ≥ 0. Observe that d = 0 if
Leopoldt’s conjecture holds true for L.

(ii) Let AF be any free submodule of H1(Fp, T ) which complements BF .
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(iii) LetAK (resp., BK) be a direct summand of lim←−
M∈E

H1(Mp, Tχ) which maps ontoAF

(resp., BF ) under the natural (surjective) corestriction map. Note that such a
direct summand exists by Nakayama’s Lemma. Note further that we have the
direct sum decomposition lim←−

M∈E
H1(Mp, Tχ) = AK ⊕ BK.

(iv) ForM∈ E, letAM ⊂ H1(Mp, Tχ) be the image ofAK under the natural projec-
tion and define similarly BM.

(v) WhenM = Fcyc, we writeAcyc in place ofAFcyc . We likewise define Bcyc. When
M = F∞, we write A∞ in place of AF∞ and define similarly B∞.

Remark 6.4. If Leopoldt’s conjecture holds true for L, then BF is the unique direct
summand of H1(Fp, Tχ) of rank g, containing locp(O×,χL ).

Proposition 6.5. The intersection of Acyc and locp(H1
Fcan

(F, Tχ ⊗ Λcyc)) is trivial. Likewise,
the intersection of A∞ and locp(H1

Fcan
(F,Tχ)) is trivial as well.

Proof. We shall prove this proposition by induction on the Krull dimension of the rele-
vant Iwasawa algebra. In the base case (when the coefficient ring in question is O and
its Krull dimension is 1), the assertion simply follows from the choice of AF . In order
not to complicate further our notation, below we indicate the induction step from base
case to Λcyc. Consider the following commutative diagram:

H1
Fcan

(F, Tχ ⊗ Λcyc)
`cyc
p //

��

H1(Fp, Tχ ⊗ Λcyc)/Acyc

����
H1
Fcan

(F, Tχ) �
�

`p

// H1(Fp, Tχ)/AF

Suppose for some U ∈ H1
Fcan

(F, T ⊗ Λcyc) we have `cyc
p (U) = 0 and let U denote its

image under the left vertical map. The diagram above shows that U = 0, thence

U ∈ ker
(
H1
Fcan

(F, T ⊗ Λcyc)→ H1(F, T )
)

= (γcyc − 1)H1
Fcan

(F, T ⊗ Λcyc),

where γcyc is any topological generator of Γcyc. Write U = (γcyc − 1)U0. We have there-
fore (γcyc − 1)`cyc

p (U0) = 0 by the choice of U. As H1(Fp, T ⊗ Λcyc)/Acyc is Λcyc-torsion
free, it follows that `cyc

p (U0) = 0, and repeating the argument above we conclude that
U0 = (γcyc − 1)U1 with U1 ∈ H1

Fcan
(F, T ⊗ Λcyc). On running this procedure k times,

we conclude that U ∈ (γcyc − 1)kH1
Fcan

(F, T ⊗ Λcyc) for every k and hence U = 0. We
conclude that the map `cyc

p is injective, completing the verification of the inductive step
(and proving the first assertion). �

Definition 6.6.

(i) Let L be any free, rank-one O[[G(K)]]-direct summand of lim←−M∈EH
1(Mp, Tχ)

such that
– L is not contained in AK ,
– L +AK is also direct summand of lim←−M∈EH

1(Mp, Tχ).
(ii) ForM∈ E, let LM ⊂ H1(Mp, Tχ) be the image of L under the natural projection

lim←−N H
1(Np, Tχ) � H1(Mp, Tχ).

(iii) We write Lcyc (resp., L∞) in place of LFcyc (resp., LF∞).
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We refer the reader to [MR04, §2.1] for a general definition of a Selmer structure. We
define here two of them that shall be useful for our purposes.

Definition 6.7.

• The L-restricted Selmer structure FL on Tχ is given by the local conditions
– H1

FL(Fq,Tχ) = H1
Fcan

(Fq,Tχ) for every prime q - p, and
– H1

FL(Fp,Tχ) = A∞ ⊕ L∞.
• The unit-transversal-Selmer structure Ftr is given by the local conditions

– H1
Ftr

(Fq,Tχ) = H1
Fcan

(Fq,Tχ) for every prime q - p, and
– H1

Ftr
(Fp,Tχ) = A∞.

Any of the Selmer structures above propagates (in the sense of [MR04, Example 2.1.7])
to give rise to Selmer structures on any subquotient of Tχ . In this article, we will be
mostly interested in the quotients Tχ or Tχ ⊗ Λcyc. The propagation of a Selmer struc-
ture F to subquotients will still be denoted by the same symbol F . Given a Selmer
structure F on Tχ, one may also define the dual Selmer structure F∗ on T∗χ using local
Tate duality, as in [MR04, Definition 2.3.1].

Recall the finite set Σ of primes of F which consists of all primes that ramify in L/F ,
all archimedean primes of F and all primes of F above p. Let FΣ denote the maximal
extension of F contained in F̄ which is unramified outside Σ and let GΣ denote the
Galois group Gal(FΣ/F ).

Definition 6.8. For F = Fcan,FL, or Ftr as above, we define the F-Selmer group on the
subquotient X of Tχ by setting

H1
F(F,X) = ker

(
H1(GΣ, X) −→

⊕
q∈Σ

H1(Fq, X)/H1
F(Fq, X)

)
.

6.2. Selmer structures for the Tate module of a CM abelian variety. Let I ∈ I, Vcyc
I ⊂

H1(Fp,Tcyc) and VI ⊂ H1(Fp,T) be the free rank-g submodule defined as in Section 5.
Assume throughout that Leopoldt’s conjecture holds for L.

Set Uρ∞ = locp
(
H1
Fcan

(F,Tρ)
)
. This is the image under locp of the (ρ-part of the)

inverse limit of global units along F∞/F . The Λ-module Uρ∞ ⊂ H1(Fp,T) is a torsion-
free submodule and it may be generated by at most g elements by Nakayama’s lemma.

Proposition 6.9. There is an I ∈ I such that tw(Uρ∞) ∩VI = 0.

Proof. It follows from [BL14, Lemma 3.28] that we may choose an I ∈ I so that

tw (Uρ∞)cyc ∩V
cyc
I = 0 ,

where tw (Uρ∞)cyc ⊂ H1(Fp,Tcyc) is the projection of tw (Uρ∞) under the map

H1(Fp,T) � H1(Fp,Tcyc).

We contend to prove the proposition for this particular I . Let F∗ ⊃ Fcyc be a Zp-
power extension. Set Γ∗ = Gal(F∗/F ) and Λ∗ = O[[Γ∗]]. We will write tw (Uρ∞)∗ ⊂
H1(Fp, T ⊗ Λ∗) (resp., V∗I ) for the image of tw (Uρ∞) (resp., VI) under the projection
H1(Fp,T) � H1(Fp, T ⊗Λ∗). We will prove by induction on the Krull dimension of Λ∗
that V∗I ∩ tw (Uρ∞)∗ = 0, similar to the proof of Proposition 6.5.
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When Λ∗ = Λcyc, the assertion follows from the choice of I . Suppose the conclusion
holds true for F∗/F , and suppose F†/F∗ is a Zp-extension. Similar to above define Λ†
and tw (Uρ∞)† ∈ H1(Fp, T ⊗ Λ†). Let γ† be a topological generator of Gal(F†/F∗). Con-
sider the following commutative diagram (where the injectivity of loc∗ is the induction
hypothesis):

H1
Fcan

(F, T ⊗ Λ†)
loc† //

��

H1(Fp, T ⊗ Λ†)/V
†
I

����
H1
Fcan

(F, T ⊗ Λ∗)
� �

loc∗
// H1(Fp, T ⊗ Λ∗)/V

∗
I

Suppose for some U ∈ H1
Fcan

(F, T ⊗ Λ†) we have loc†(U) = 0 and let U = 0 denote its
image under the left vertical map. The diagram above shows that U = 0, thence

U ∈ ker
(
H1
Fcan

(F, T ⊗ Λ†)→ H1(F, T ⊗ Λ∗)
)

= (γ† − 1)H1
Fcan

(F, T ⊗ Λ†, .

Write U = (γ† − 1)U0. We have therefore have (γ† − 1)loc†(U0) = 0 by the choice of
U. As H1(Fp, T ⊗ Λ†)/V

†
I is Λ†-torsion free, it follows that loc†(U0) = 0, and repeating

the argument above we conclude that U0 = (γ† − 1)U1 with U1 ∈ H1
Fcan

(F, T ⊗ Λ†). On
running this procedure k times, we conclude that U ∈ (γ† − 1)kH1

Fcan
(F, T ⊗ Λ†) for

every k and hence U = 0. We conclude that the map loc† in upper row is injective,
completing the verification of the inductive step. �

Fix until the end I ∈ I such that tw (Uρ∞)cyc ∩V
cyc
I = 0 and tw (Uρ∞) ∩VI = 0 .

Corollary 6.10. We define loccol
p as the compositum of the maps

loccol
p : H1

Fcan
(F,Tρ)

locp−→ H1(Fp,Tρ)
C̃ρ−→ Λg .

Then loccol
p is injective and the element loccol,⊗g

p (Sρ
∞) ∈ Λ is non-zero.

By a slight abuse, let loccol
p also denote the maps

loccol
p : H1

Fcan
(F,T)

locp−→ H1(Fp,T)
C̃−→ Λg ,

and
loccol

p : H1
Fcan

(F,Tcyc)
locp−→ H1(Fp,Tcyc)

C−→ Λg
cyc .

Then loccol,⊗g
p (tw(Sρ

∞)cyc) ∈ Λcyc (and therefore, also loccol,⊗g
p (tw(Sρ

∞)) ∈ Λ) is non-zero.

Definition 6.11. Let L ⊂ Z̃ be any free direct summand of rank one and set L̃ := Z̃/L.
Set

H1
L(Fp,T) := ker

(
H1(Fp,T)

C̃−→ L̃
)
.

Throughout this paper, we will make use of the following Selmer structures on the
GF -representation T or via propagation, on its various quotients (such as T and Tcyc).
The first of these Selmer structures will be auxiliary, whereas the second is direct gen-
eralization of Kobayashi’s signed Selmer groups to our setting. We further note that
via the twisting isomorphism (3.2), all these Selmer structures also define a Selmer
structure on Tρ and its various subquotients.

Definition 6.12.
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• The L-restricted Selmer structure is given by the local conditions
– H1

FL
(Fq,T) = H1

Fcan
(Fq,T) for every prime q - p, and

– H1
FL

(Fp,T) = H1
L(Fp,T).

• The I-signed Selmer structure FI is given by the local conditions
– H1

FI (Fq,T) = H1
Fcan

(Fq,T) for every prime q - p, and
– H1

FI (Fp,T) = VI .

6.3. Comparison of Selmer groups. Note for residual representations we have T χ =

Tχ = µµµp ⊗ χ−1 and T = T = A[p] as GF -representations. In particular, when χ is
chosen to be ω−1

E , it follows from the definition of T and the discussion in Remark 2.2
that both these residual representations we consider are isomorphic.

Let k denote the residue field of O.

Lemma 6.13. Assume the truth of Leopoldt’s conjecture for the number field L. We have

(6.1) dimk H
1
Ftr

(F, T χ) = dimk H
1
F∗tr(F, T

∗
χ) , dimk H

1
FI (F, T ) = dimk H

1
F∗I

(F, T
∗
)

and

(6.2) dimk H
1
FL

(F, T χ) = dimk H
1
F∗L

(F, T
∗
χ) + 1, dimk H

1
FL

(F, T ) = dimk H
1
F∗L

(F, T
∗
) + 1

Proof. As explained in Example 4.9 we have H1
Fcan

(F, Tχ) ∼= O×,χLχ
and this module is

free of rank g under the running assumptions. On the other hand, H1
F∗can

(F, T ∗) ∼=
CL(L)χ is finite and it follows from the discussion in Section 5.2 of [MR04] that

dimk H
1
Fcan

(F, T χ)− dimk H
1
F∗can

(F, T
∗
χ) = rankOH

1
Fcan

(F, Tχ)− corankOH
1
F∗can

(F, T ∗χ)

= g(6.3)

Observe that we have by the choices we have made that

dimk H
1
Fcan

(Fp, T χ)− dimk H
1
Ftr

(Fp, T χ) = g ,

dimk H
1
Fcan

(Fp, T χ)− dimk H
1
FL

(Fp, T χ) = g − 1 .

Using [Wil95, Proposition 1.6] we conclude that

(dimk H
1
Fcan

(F, T χ)− dimk H
1
F∗can

(F, T
∗
χ))− (dimk H

1
Ftr

(F, T χ)− dimk H
1
F∗tr(F, T

∗
χ))

= dimk H
1
Fcan

(Fp, T χ)− dimk H
1
Ftr

(Fp, T χ) = g

and

(dimk H
1
Fcan

(F, T χ)− dimk H
1
F∗can

(F,T
∗
χ))− (dimk H

1
FL

(F, T χ)− dimk H
1
F∗L

(F, T
∗
χ))

= dimk H
1
Fcan

(Fp, T χ)− dimk H
1
FL

(Fp, T χ) = g − 1 .

The portion concerning the Selmer groups for T χ follows from (6.3). Making use of
[MR04, Theorem 5.2.15] in place of (6.3), the assertions on the Selmer groups for T are
deduced in an identical way. �

Remark 6.14. It follows from Lemma 6.13 and [MR04, Corollary 4.5.2] that the k-
vector space of Kolyvagin systems KS(FL, T χ) (resp., KS(FL, T )) have dimension one.
On the other hand, it follows from the main theorem of Section B that these resid-
ual Kolyvagin systems deform to Tχ and T and that the Λ-module KS(FL,Tχ) (resp.,
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KS(FL,T)) is free of rank one. Elements of these modules (namely, Kolyvagin sys-
tems) are used to bound the characteristic ideal of H1

F∗L
(F,T∗χ)∨ (resp., H1

F∗L
(F,T∗)∨).

The generators of the module of Kolyvagin systems are characterized by the prop-
erty that the bounds they give on the characteristic ideal of H1

F∗L
(F,T∗χ)∨ (resp., of

H1
F∗L

(F,T∗)∨) are sharp.
We will later use the (conjectural) Rubin-Stark elements to construct these Kolyva-

gin systems and exploit facts recalled above in order to verify the sharpness of the
bounds we shall obtain on the signed (cyclotomic) Selmer groups for a CM abelian
variety. This is one of the novelties in this article: In [PR04], the corresponding state-
ment (Kobayashi’s conjecture) was deduced from a (2-variable) CM main conjecture
by a descent argument. For this reason, Pollack and Rubin had to utilize the non-
existence of pseudo-null submodules of various Iwasawa modules. The analogous
statements are not available in our context and our methods here are designed exactly
to by-pass this issue.

Lemma 6.15. Let tw (Uρ∞)cyc ⊂ locp (H1(F,Tcyc)) be as in the proof of Proposition 6.9. If
H1
F∗can

(F,T∗cyc)
∨ is Λcyc-torsion then so is the quotient locp (H1(F,Tcyc)) /tw (Uρ∞)cyc .

Proof. We will proceed by induction and our notation will be very similar to the proof
of Proposition 6.9.

Let F∗ ⊃ Fcyc be a Zp-power extension. Set Γ∗ = Gal(F∗/F ) and Λ∗ = O[[Γ∗]]. We
will write tw (Uρ∞)∗ ⊂ H1(Fp, T ⊗ Λ∗) (resp., V∗I ) for the image of tw (Uρ∞) (resp., VI)
under the projection H1(Fp,T) � H1(Fp, T ⊗ Λ∗). We will prove by an (descending)
inductive argument on the Krull dimension of Λ∗ that locp (H1(F, T ⊗ Λ∗)) /tw (Uρ∞)∗

is Λ∗-torsion.
In the base case (i.e., when Λ∗ = Λ), the assertion is evident (since the quotient

in question is trivial). Suppose the conclusion holds true for the Zp-power extension
F†/F containing Fcyc, and suppose F∗/F† is a Zp-extension. Similar to above define Λ†
and tw (Uρ∞)† ∈ H1(Fp, T ⊗ Λ†). Let γ∗ be a topological generator of Gal(F∗/F†). As
in the discussion of Remark 4.11 (particularly, using Nekovář’s control theorem as in
(4.1)) we have

coker
(
H̃1
f,Iw(FΣ/F∗, T ) −→ H̃1

f,Iw(FΣ/F†, T )
)
∼= H̃2

f,Iw(FΣ/F∗, T )[γ∗ − 1](6.4)

We claim that this module is Λ†-torsion. We note that

H̃2
f,Iw(FΣ/F∗, T ) ∼= H1

F∗can
(F, (T ⊗ Λ∗)

∗)∨

by [Nek06, 8.9.6.2]. Furthermore,

H1
F∗can

(F, (T ⊗ Λ∗)
∗)∨/(γ∗ − 1) ∼=

(
H1
F∗can

(F, (T ⊗ Λ∗)
∗)[γ∗ − 1]

)∨ ∼= H1
F∗can

(F, (T ⊗ Λ†)
∗)∨

where the second isomorphism is by [MR04, Lemma 3.5.3]. Since we assumed that
H1
F∗can

(F,T∗cyc)
∨ is torsion, we once again use [MR04, Lemma 3.5.3] to conclude that the

Λ†-module H1
F∗can

(F, (T ⊗ Λ∗)
∗)∨/(γ∗ − 1) is torsion. It follows from Lemma 4.10 that

H1
F∗can

(F, (T ⊗ Λ∗)
∗)∨[γ∗ − 1] ∼= H̃2

f,Iw(FΣ/F∗, T )[γ∗ − 1]

is Λ†-torsion as well, as we have claimed.
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The quotient locp (H1(F, T ⊗ Λ†)) /tw (Uρ∞)† is a homomorphic image of the quotient

H1(F, T ⊗ Λ†)/im
(
H1(F, T ⊗ Λ∗)

) ∼= coker
(
H̃1
f,Iw(FΣ/F∗, T ) −→ H̃1

f,Iw(FΣ/F†, T )
)
.

This completes the verification of the induction step. �

Proposition 6.16. Assume that Leopoldt’s conjecture holds for L. Then,

H1
Ftr

(F, Tχ) = H1
Ftr

(F, Tχ ⊗ Λcyc) = H1
Ftr

(F,Tχ) = 0

and if H1
F∗can

(F,Tcyc(E)∗)∨ is Λcyc-torsion,

H1
FI (F,Tcyc) = H1

FI (F,T) = 0 .

Proof. The first group of assertions follow from the definitions.
The quotient locp (H1(F,Tcyc)) /tw (Uρ∞)cyc is a torsion Λcyc-module by Lemma 6.15.

Since tw (Uρ∞)cyc ∩ Vcyc
I = 0 by our very choice of I ∈ I and since H1(Fp,Tcyc)/V

cyc
I is

torsion free, it follows that locp (H1(F,Tcyc)) ∩ Vcyc
I = 0. This means

H1
FI (F,Tcyc) := ker

(
H1(F,Tcyc)

locp−→ Vcyc
I

)
= 0 .

The proof that H1
FI (F,T) = 0 follows by induction using Nakayama’s Lemma at

each step. �

Remark 6.17. The statement that H1
F∗can

(F,T∗cyc)
∨ is Λcyc-torsion is a form of the weak

Leopoldt conjecture for T . See Theorem 7.4(iii) below where we verify this statement
assuming the Explicit Reciprocity Conjecture 4.18 for the Perrin-Riou-Stark elements.

Proposition 6.18. Assume that Leopoldt’s conjecture holds for L and the weak Leopoldt con-
jecture for T .

(i) For X = Tχ, Tχ⊗Λcyc,Tχ (resp., LX = LF ,Lcyc,L∞) the following sequence is exact:

0 −→ H1
FL

(F,X)
locp−→ LX−→H1

F∗tr(F,X
∗)∨ −→ H1

F∗L
(F,X∗)∨ −→ 0.

(ii) For X = Tcyc,T and VX
I = Vcyc

I ,VI the following sequence is exact:

0 −→ H1
FL

(F,X)
locp−→ H1

FL
(Fp, X)/VX

I −→H1
F∗I

(F,X∗)∨ −→ H1
F∗L

(F,X∗)∨ −→ 0.

Proof. This follows from Poitou-Tate global duality, used along with Proposition 6.16.
�

7. PERRIN-RIOU-STARK KOLYVAGIN SYSTEMS AND MAIN CONJECTURES

The goal in this section is to verify that the hypotheses of Appendix A hold true
and apply the main results therein with the (conjectural) Rubin-Stark element Euler
system of rank r in order to deduce the (g+1)-variable main conjecture in this setting.
These results will be useful to us for deducing one of the main results of this article
(Theorem 7.7), namely the full (i.e., not only a divisibility statement in the) signed
main conjecture for CM abelian varieties.

Remark 7.1. The statements in this section are unfortunately conditional on the truth
of Rubin-Stark conjectures. However, we prove in Appendix B that the Kolyvagin sys-
tems which these conjectural elements yield (following the recipe of Appendix A.2) do
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exist unconditionally. It is these Kolyvagin systems that we use to bound the relevant
Selmer groups; however, in order to link our bounds with the L-values, the connec-
tion of these Kolyvagin systems with the Rubin-Stark elements is essential. It would
be interesting to obtain unconditional consequences of this fact, such as when the CM
field F is absolutely abelian.

7.1. CM main conjectures in (g + 1)-variables. We assume the truth of the Perrin-
Riou-Stark conjecture, the Leopoldt conjecture for L and the Explicit Reciprocity Con-
jecture 4.18. We also assume that the set S that appears in the definition of Rubin-Stark
elements (see Section 4) contains no non-archimedean prime of F that splits in L/F .

Recall the Selmer structures on FL or FI on T from Definition 6.12. By the twist-
ing morphism (3.2) we have an induced Selmer structure on Tρ (and on its various
subquotients, such as Tρ and Tρ ⊗ Λcyc). We denote this Selmer structure also by FL.

The first two assertions in Theorem 7.4 below is one of the main applications of the
L-restricted Perrin-Riou-Stark Kolyvagin systems we shall construct in Theorem A.11
below (which will be applied by setting X = Tρ and Ψ = C̃ρp for (i) and X = T and
Ψ = C̃ for (ii)). Recall the rank-g Euler system C(g)

R-S := {ερK}K∈E of Rubin-Stark elements.
On choosing Ξ = {Ξη}η as in §§A.1 and A.2 below we obtain an L-restricted Kolyvagin
system κκκΞ ∈ KS(Tρ,FL,P) whose initial term is given by an element denoted by

cΞ
F∞ ∈ H

1(F,Tρ).

We remark that the element cΞ
F∞ corresponds to the element denoted by cΞ

∞,1 in Sec-
tion A.2 (with X = Tρ and Ψ = C̃ρp). Let tw(cΞ

F∞)cyc ∈ H1
FL

(F,Tcyc) denote the image of
tw(cΞ

F∞) ∈ H1
FL

(F,T).

Definition 7.2. Let κκκPS ∈ KS(T,FL) denote the Kolyvagin system obtained from
the twisted Perrin-Riou-Stark elements via the descent procedure we develop in Sec-
tion A.2 (applied with X = T ). Let κκκPS,cyc ∈ KS(Tcyc,FL) denote its image under the
obvious map. Note that the initial term of κκκPS is given by tw(cΞ

F∞) ∈ H1(F,T) and the
initial term of κκκPS,cyc by tw(cΞ

F∞)cyc ∈ H1(F,Tcyc), the projection of tw(cΞ
F∞).

Definition 7.3. Let Cl(F∞)ρ = lim←−M⊂LF∞ Cl(M)ρ and define Cl(Fcyc)
ρ similarly. We

have the identifications (by class field theory) Cl(F∞)ρ = H1
F∗can

(F,T∗ρ)∨ and Cl(Fcyc)
ρ =

H1
F∗can

(F, (Tρ ⊗ Λcyc)
∗)∨.

The final part of the following theorem is our first result towards the main conjec-
ture for the maximal Zp-power extension F∞ of the CM field F .

Theorem 7.4. Let L := H1
FL

(Fp,Tρ)/H1
I and V := H1(Fp,Tρ)/H1

I .

(i) tw
(
cΞ
F∞

)cyc 6= 0, the Λcyc-module H1
F∗L

(F,T∗cyc)
∨ is torsion and

char
(
H1
F∗L

(F,T∗cyc)
∨
)
| char

(
H1
FL

(F,Tcyc)/Λcyc · tw
(
cΞ
F∞

)cyc)
.

(ii) char
(
H1
F∗L

(F,T∗ρ)∨
)

divides char
(
H1
FL

(F,Tρ)/Λ · cΞ
F∞

)
.

(iii) Weak Leopoldt conjecture for T holds true.
(iv) char (Cl(F∞)ρ) divides char

(
∧gH1(F,Tρ)/Λ ·Sρ

∞
)

.
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Remark 7.5. We explain that all the characteristic ideals that appear in the assertion
of Theorem 7.4 are non-zero. We shall prove (without relying on any of the conclu-
sions that shall follow) that the element tw

(
cΞ
F∞

)cyc is non-zero. On the other hand,
H1
FL

(F,Tcyc) injects into the torsion-free, rank-one Λcyc-module H1
FL

(Fp,Tcyc)/V
cyc
I by

Proposition 6.18(ii) and it therefore follows that H1
FL

(F,Tcyc)/Λcyc · tw
(
cΞ
F∞

)cyc is tor-
sion. Arguing similarly, we also check at once that H1

FL
(F,Tρ)/Λ · cΞ

F∞ is a torsion
Λ-module. Furthermore, since we assumed Leopoldt’s conjecture for L, it follows that
the element Sρ

∞ is non-zero (c.f., the proof of [Rub96, Proposition 6.6(ii)]). We con-
clude using Lemma 4.11 that the Λ-module ∧gH1(F,Tρ)/Λ ·Sρ

∞ is torsion.
Likewise, all the characteristic ideals which are present on the right-sides of the di-

visibilities (7.1) and (7.3)-(7.7) below are non-zero, since every single one of the corre-
sponding module is either a quotient of a rank-r module by another rank-r submodule
(where r = 1 or g).

Proof of Theorem 7.4. The Explicit Reciprocity Conjecture 4.18 implies that tw
(
cΞ
F∞

)cyc 6=
0. The rest of (i) is deduced using the Kolyvagin system machinery applied for the
Selmer structure FL on Tcyc (see [MR04, Section 5.3]). Note that the hypotheses (H0)
and (H1) of loc.cit. hold obviously true, whereas (H2) holds with τ = 1. The truth of
hypothesis (H3) follows from Remark 5.14 and the truth of (H4) is also trivial (since
p > 3 from start). The second part of the theorem follows via an enhancement of the
arguments of [MR04, Section 5.3] using the “dimension reduction trick” due to Ochiai,
as given in [Och05, pp. 145]). The proof of (iii) is immediate from (i) since we have a
tautological containment H1

F∗can
(F,T∗cyc) ⊂ H1

F∗L
(F,T∗cyc).

We now prove (iv). On applying the twisting morphism tw on the exact sequence
of Proposition 6.18(ii) (which applies thanks to (iii)) we have the following exact se-
quence:

0 −→ H1
FL

(F,Tρ)/Λ · cΞ
F∞

locp−→ L/Λ · locp(cΞ
F∞)−→H1

F∗I
(F,T∗ρ)∨ −→ H1

F∗L
(F,T∗ρ)∨ −→ 0.

It follows from (ii) that

char
(
H1
F∗I

(F,T∗ρ)∨
) ∣∣∣ char

(
L/Λ · locp

(
cΞ
F∞

))
(7.1)

=
char

(
L/Λ · loccol

p

(
cΞ
F∞

))
char

(
L/C̃ρ(L)

)
The identification H1

Fcan
(F,T∗ρ)∨ = Cl(F∞)ρ yields

(7.2) 0 −→ H1
Fcan

(F,Tρ)
locp−→ V −→ H1

F∗I
(F,T∗ρ)∨ −→ Cl(F∞)ρ −→ 0 .
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Recall the module Uρ∞. By slight abuse, we denote its isomorphic image inside V also
by Uρ∞. The displayed equation (7.2) together with (7.1) shows

char (Cl(F∞)ρ)
∣∣∣ char

(
L/Λ · loccol

p

(
cΞ
F∞

))
char (L/Cρ(L)) · char (V/Uρ∞)

=
char

(
∧gZ̃

/
Λ · loccol,⊗g

p (Sρ
∞)
)

char (L/Cρ(L)) · char (V/Uρ∞)
(7.3)

=
char

(
∧gZ̃

/
Λ · loccol,⊗g

p (Sρ
∞)
)

char
(

coker(L C̃ρ→ L)

)
· char(Z̃/C̃ρ(Uρ∞))

char(coker(V C̃ρ→Z̃))

(7.4)

=
char

(
∧gZ̃

/
Λ · loccol,⊗g

p (Sρ
∞)
)

char
(
Z̃/C̃ρ(Uρ∞)

)(7.5)

= char
(
∧gC̃ρ(Uρ∞)

/
Λ · loccol,⊗g

p (Sρ
∞)
)

(7.6)

= char
(
∧gH1(F,Tρ)

/
Λ ·Sρ

∞

)
.(7.7)

We explain the non-obvious steps. (7.3) holds true thanks to the following diagram
with commutative squares:

Sρ
∞_

��

( ++
∈ ∧gH1(F,Tρ)

loc⊗gp //

Ξ1

��

∧gH1(Fp,Tρ)
C̃ρ //

Ξ1

��

∧gZ̃

ϕ1

��
∼
��

3 loccol,⊗g
p (Sρ

∞)
_

��

cΞ
F∞ � 33∈ H1

FL
(F,Tρ)

locp // H1
FL

(Fp,Tρ)
C̃ρ // L 3 loccol

p

(
cΞ
F∞

)
Here ϕ1 is the isomorphism of Proposition A.8(i) (with η = 1, Z̃ chosen in place of
Λg and L ⊂ Z̃ in place of L ⊂ Λg), the map Ξ1 in the middle is the map of Proposi-
tion A.8(ii) and Ξ1 on the left is induced by functoriality from the one in the middle.
The steps (7.4) and (7.7) follow since C̃ρ is injective on V and the steps (7.5) is because

both modules coker(L C̃ρ→ L) ↪→ coker(V C̃ρ→ Z̃) are pseudo-null by the construction
of (normalized) Coleman maps. Finally, step (7.6) is because the Λ-module Uρ∞ (and
therefore, also its isomorphic image C̃ρ) is free of rank g. The proof of the theorem is
now complete. �

Remark 7.6. The proof above in fact may be modified slightly to prove that the fol-
lowing statement holds true for every intermediate Zp-power extension F∗/F that
either contains F cyc or else F∗ = F . Let Λ∗ be as in the proof of Proposition 6.9
(when F∗ = F we set Λ∗ = O and charΛ∗(?) = FittO(?)) and let Sρ

∗ denote the
Perrin-Riou-Stark element for the tower F∗/F . We then prove that charΛ∗ (Cl(F∗)ρ)
divides charΛ∗

(
∧gH1(F, Tρ ⊗ Λ∗)/Λ ·Sρ

∗
)

(when F∗ = F , write H1
Fcan

(F, Tρ) in place of
H1(F, Tρ ⊗ Λ∗)).
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Theorem 7.7. We assume the truth of the Perrin-Riou-Stark Conjecture 4.14, the Leopoldt
conjecture for L and the Explicit Reciprocity Conjecture 4.18. We also assume that the set
S that appears in the definition of Rubin-Stark elements (see Section 4) contains no non-
archimedean prime of F that splits in L/F .

(i) #Cl(L)ρ = [∧gO×,ρL : O · ερF ].
(ii) The divisibility in the statement of Theorem 7.4(iv) may be upgraded to an equality

and char (Cl(F∞)ρ) = char
(
∧gH1(F,Tρ)/Λ ·Sρ

∞
)

.

(iii) char
(
H1
F∗I

(F,T∗)∨
)

is generated by loccol,⊗g
p (tw(Sρ

∞)).
(iv) The divisibility in the statement of Theorem 7.4(ii) may be upgraded to an equality and

char
(
H1
F∗L

(F,T∗)∨
)

= char
(
H1
FL

(F,T)/Λ · tw(cΞ
F∞)
)

.

(v) The Perrin-Riou-Stark Kolyvagin system κκκPS is primitive.
(vi) The cyclotomic Perrin-Riou-Stark Kolyvagin system κκκPS,cyc is primitive.

(vii) char
(
H1
F∗I

(F,T∗cyc)
∨
)

is generated by loccol,⊗g
p (tw(Sρ

∞)cyc).

Remark 7.8. The statement of Theorem 7.7(i) is a form of Gras’ conjecture for L. The
Iwasawa module H1

F∗I
(F,T∗)∨ which appears in (iii) should be compared to the mod-

ule X̂ of [Rub91, §11] and the assertion (iii) should be thought of as a generalization of
Rubin’s main conjecture [Rub91, Theorem 4.1(ii)]. We will soon convert the statement
of (vii) to a signed main conjecture, comparing the characteristic ideal of the signed
(cyclotomic) Selmer group to a signed p-adic L-function. We also note that the element
loccol,⊗g

p (tw(Sρ
∞)cyc) (and therefore, also the element loccol,⊗g

p (Sρ
∞)) is non-zero thanks

to Corollary 6.10.

Proof of Theorem 7.7. The proof of (i) is identical to the proof of [Büy13c, Theorem 5.2(i)]
(also, a minor alteration of the proof of Theorem 7.4(iv) combined with an analytic
class number formula gives a proof of this assertion as well).

Let F∗/F be any Zp-power extension as in Remark 7.6, we also adapt the notation
from that paragraph (and from the proof of Proposition 6.9). We shall prove by induc-
tion on the Krull dimension of Λ∗ that

charΛ∗ (Cl(F∗)ρ) = charΛ∗

(
∧gH1(F, Tρ ⊗ Λ∗)/Λ ·Sρ

∗
)
.

Note that the base case (which is when Λ∗ = O) is equivalent to the statement of (i).
Let F† ⊂ F∗ be a Zp-power extension of F such that Γ∗/Γ† ∼= Zp and let γ∗ ∈ Γ∗/Γ† be
any topological generator. To ease notation, we set U? := H1(F, Tρ ⊗ Λ?) for ? = ∗, †
and suppose that we have already proved

charΛ† (Cl(F†)ρ) = charΛ†

(
∧g U†/Λ ·Sρ

†
)
.

It follows from Lemma 4.10 (applied with G = Γ∗, H = Γ†, γH = γ∗ and πH = π†) that

π†(charΛ∗ (Cl(F∗)ρ)) · charΛ† (Cl(F∗)ρ[γ∗ − 1]) = charΛ† (Cl(F∗)ρ/(γ∗ − 1)Cl(F∗)ρ)
= charΛ† (Cl(F†)ρ)(7.8)

= charΛ†

(
∧g U†/Λ ·Sρ

†
)
,(7.9)



30 KÂZIM BÜYÜKBODUK AND ANTONIO LEI

where (7.8) follows from [MR04, Lemma 3.5.3] used as in the proof of Lemma 6.15.
Using Lemma 4.10 once again we have

π† (charΛ∗ (∧g U∗/Λ ·Sρ
∗)) = π†

(
charΛ† (∧g U∗/Λ ·Sρ

∗)
)
· charΛ† ((∧g U∗/Λ ·Sρ

∗) [γ∗ − 1])

=
charΛ†

(
∧g U†/Λ ·Sρ

†
)

charΛ† (∧g U†/ ∧g im(U∗ → U†))

=
charΛ†

(
∧g U†/Λ ·Sρ

†
)

charΛ† (coker(U∗ → U†))
(7.10)

=
charΛ†

(
∧g U†/Λ ·Sρ

†
)

charΛ† (Cl(F∗)ρ[γ∗ − 1])
.(7.11)

We explain the first equality. The Λ∗-module (∧g U∗/Λ ·Sρ
∗) [γ∗ − 1] is pseudo-null by

Lemma 4.10(ii), but since the Λ∗-module ∧g U∗ has no non-zero pseudo-null submod-
ules and Λ ·Sρ

∗ is free, the quotient ∧g U∗/Λ ·Sρ
∗ does not have any pseudo-null sub-

modules. Thence (∧g U∗/Λ ·Sρ
∗) [γ∗ − 1] = 0 and charΛ† ((∧g U∗/Λ ·Sρ

∗) [γ∗ − 1]) = R.
The step (7.10) follows since both Λ†-modules U† and im(U∗ → U†) are free; whereas
(7.11) follows from (4.1). The induction step now follows combining (7.9) and (7.11)
and this completes the proof of (ii).

Given (ii), one may trace back in the proof of Theorem 7.4 to see that the charac-
teristic ideal of the Λ-module

(
H1
F∗I

(F,T∗ρ)∨
)

is generated by loccol,⊗g
p (Sρ

∞). A formal
twisting argument (c.f., [Rub00, Chapter 6]) proves (iii). One may proceed similarly
to prove (iv) as well.

Now (v) follows from (iv) and (vi) from (v) (as a primitive Kolyvagin system κκκ is
characterized by its property that its image κκκ as a Kolyvagin system for the residual
representation is non-zero). (viii) is then the restatement of Theorem A.14(iii). �

7.2. The (analytic) signed p-adic L-function and the signed (cyclotomic) main con-
jecture. Let ξξξ = ξξξ1 ∧ · · · ∧ ξξξg ∈ Uψ∞ be a generator verifying Conjecture 4.18. In this
section we borrow ideas from our companion article [BL14] in order to define signed
p-adic L-function and study its various properties. For a completion Fλ of F at a prime
above p, let

LFλT : H1
Iw(Fλ, T ) −→ HO ⊗O DFλ(T )

denote Perrin-Riou’s regulator map from Appendix C. Set Dp(T ) := ⊕q|pDFq(T ) and

LT := ⊕q|p LFq

T : H1
Iw(Fp, T ) −→ HO ⊗O Dp(T )

denote the semi-local regulator map.

Definition 7.9. The (Perrin-Riou’s) p-adic L-function Lp(A
∨) is defined as the image of

the regulator map on the twisted Rubin-Stark element ξξξ:

Lp(A
∨) := L⊗gT (locp(ξξξ)) ∈ HO ⊗O ∧gDp(T ) .

Remark 7.10. In this remark we explain why Lp(A
∨) is deserved to be called a p-

adic L-function. Indeed, it follows from [BL14, Proposition 3.11] that the element
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Lp(A
∨) may be characterized by the following interpolation property: For every even

Dirichlet character θ of conductor pn, we have

θ (Lp(A
∨)) =

∑
I∈I

(
pn

τ(θ−1)

)g
L{p}(ψ, θ

−1, 1)
ΩI
ψ,p

ΩI
ψ

· ϕn (∧i∈I vi)

When θ is the trivial character,

θ (Lp(A
∨)) =

∑
I∈I

(1− ϕ)(1− p−1ϕ−1)−1L{p}(ψ, 1)
ΩI
ψ,p

ΩI
ψ

· (∧i∈Ivi) .

Here ΩI
ψ (resp., ΩI

ψ,p) is a complex (resp., p-adic) period as in the statement of Conjec-
ture 4.18.

Definition 7.11. For any I ∈ I recall that we have the Coleman map C. We define the
signed p-adic L-function LIp(A∨) by setting

LIp(A∨) = det
(
CIT (ξξξi)

)
.

Remark 7.12. As explained in [BL14, Lemma 3.16], there exists an integer n(I) ≥ 0 such
that det(Im(CIT )) = (γcyc − 1)n(I)Λcyc. In particular, (γcyc − 1)n(I) divides LIp(A∨). Note
that n(I) = 0 if the basis we choose to define the Coleman map is strongly divisible in
the sense of [BL14, Definition 3.2].

Let MT ∈ GL2g (HO) denote the logarithmic matrix given as in [BL14, §2.3 and §3.1].
For every pair I, J ∈ I, let M I,J

T be the g × g the submatrix of MT whose entries are
the those indexed by the elements of I × J . The following Theorem shows that that
Perrin-Riou’s p-adic L-function may be decomposed into anHO-linear combination of
the (integral) signed p-adic L-functions LIp(A∨), justifying our choice of terminology.

Note that the p-adic L-functions defined this way are compatible with the defini-
tion of Pollack’s ±-p-adic L-functions defined in [Pol03]. See [BL14, Appendix D] for
details.

Theorem 7.13. There is a decomposition

Lp(A
∨) =

∑
I,J∈I

det(M I,J
T ) · LJp (A∨) · ∧i∈Ivi .

Proof. This is [BL14, Theorem 3.18]. �

Definition 7.14. Let C denote the matrix of (1 − ϕ)−1(pϕ − 1) acting on Dp(T
†) with

respect to our fixed (dual) basis. Besides I ∈ I we have fixed above, let J ∈ I be
another element and let DI,J denote the (I, J) co-minor of C.

The following interpolation formula for the signed p-adic L-function follows from
[BL14, Proposition 3.18]:

Proposition 7.15. For an even Dirichlet character θ modulo p we have

θ
(
LIp(A∨)

)
=

L{p}(ψ, 1)
∑

J∈IDI,J
ΩJψ,p
ΩJψ

if θ is trivial,
pg

τ(θ−1)g
L{p}(ψ, θ

−1, 1)
ΩIψ,p
ΩIψ

otherwise.
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We are now ready to prove the signed main conjecture for CM abelian varieties at
supersingular primes.

Theorem 7.16. Suppose that the Perrin-Riou-Stark elements verify the Explicit Reciprocity
Conjecture 4.18. Then

char
(
SelIp(A

∨/F cyc)∨
)

=
LIp(A∨)

(γcyc − 1)n(I)
· Λcyc .

Proof. It is easy to see (relying on a theorem of Lutz away from p) that

H1
F∗I

(Fp,T∗cyc) = SelIp(A
∨/F cyc) .

The proof follows by Theorem 7.7(vii) and the definition of the signed p-adicL-function
LIp(A∨). �

8. DESCENT AND THE BIRCH–SWINNERTON-DYER CONJECTURE

Let S ′ be the set of primes of F whose elements are the bad primes of T , the primes
above p and the infinite primes. If v ∈ S ′ with v - p, we define

J Iv (Fn) =
⊕
wn|v

H1(Fn,v, A
∨[p∞]) and J Iv (F cyc) = lim−→

n

Jv(Fn),

where wn runs through all the primes of Fn dividing v. We also define

J Ip (Fn) =
H1(Fn,p, A

∨[p∞])

Vn,⊥
I

and J Ip (F cyc) =
H1(F cyc

p , A∨[p∞])

V
cyc,⊥
I

.

Here, Vn,⊥
I is the orthogonal complement of the projection of Vcyc

I inH1(Fn,p, T ) under
the pairing

H1(Fn,p, T )×H1(Fn,p, A
∨[p∞])→ Qp/Zp.

Lemma 8.1. We have equality V 0,⊥
I = H1

f (Fp, A
∨[p∞]).

Proof. This is equivalent to saying that the projection of Vcyc
I = kerC in H1(Fp, T ) is

equal to H1
f (Fp, T ).

By [BL14, Lemma 2.17], we have the inclusion

H1
f (Fp, T ) ⊂ (kerC)Γcyc .

But since C is pseudo-surjective, (kerC)Γcyc is a rank-g Zp-module. Subsequently, both
H1
f (Fp, T ) and (kerC)Γcyc are saturated submodule of H1(Fp, T ) of rank g, so they must

coincide. �

We thus have a commutative diagram
(8.1)
0 // SelIp(A

∨/F cyc)Γcyc // H1(GS′(F
cyc), A∨[p∞])Γcyc //

⊕
v-p J

I
v (F cyc)Γcyc ⊕ J Ip (F cyc)Γcyc

0 // Selp(A
∨/F ) //

α

OO

H1(GS′(F ), A∨[p∞]) //

β

OO

⊕
v-p J

I
v (F )⊕ J Ip (F ),

γ⊕γp

OO

where the vertical maps are restriction maps.

Lemma 8.2. The maps β, γ are isomorphisms and γp is a monomorphism.
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Proof. By Remark 5.14, (A∨[p∞])Γcyc = 0 and we conclude that the maps β and γ are
isomorphisms by the inflation-restriction sequence.

As for the map γp , we consider the commutative diagram

H1
f (Fp, A

∨[p∞]) �
� //

��

H1(Fp, A
∨[p∞]) // //

��

H1(Fp, A
∨[p∞])/H1

f (Fp, A
∨[p∞])

γp��

H0
(

Γcyc,V
cyc,⊥
I

)
� � // H0

(
Γcyc, H

1(F cyc
p , A∨[p∞])

)
// H0

(
Γcyc,

H1(F cyc
p ,A∨[p∞])

V
cyc,⊥
I

)
.

The left-most vertical map is an isomorphism by Lemma 8.1 and the vertical map in
the middle is an isomorphism by the inflation-restriction sequence. It follows from
Snake Lemma that the map γp is a monomorphism. �

Proposition 8.3. The map

α : Selp(A
∨/F ) −→ SelIp(A

∨/F cyc)Γcyc

is an isomorphism.

Proof. This follows chasing the diagram (8.1) with the aid of Lemma 8.2. �

Recall that we wrote A ∼p B for A,B ∈ Qp if ordp(A/B) = 0.

Theorem 8.4. Assume that the hypotheses of Theorem 7.16 hold true and suppose that I ∈ I
is as in the proof of Proposition 6.9 with n(I) = 0. Then the following two assertions are
equivalent:

(i) L{p}(ψ, 1) 6= 0 and the p-adic period
∑

J∈IDI,J
ΩJψ,p
ΩJψ

does not vanish.
(ii) Selp(A

∨/F ) is finite.

In either case,

|Selp(A
∨/F )| ∼p L{p}(ψ, 1) ·

∑
J∈I

DI,J
ΩJ
ψ,p

ΩJ
ψ

.

Proof. This follows easily from Theorem 7.16, Proposition 7.15 and Proposition 8.3. �
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APPENDIX A. COLEMAN-ADAPTED RANK-g EULER SYSTEM ARGUMENT

The goal of this appendix is to modify the rank-r Euler-Kolyvagin system machin-
ery (developed in [Büy10]) so as to adapt them for our purposes in this article. The
main difficulty is due to the fact that the Coleman maps do not in general have free
images.
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A.1. Preliminaries. Let Φ be a finite extension of Qp and let O be its ring of integers.
Let k be either a totally real number field or a CM field, let kcyc denote its cyclotomic
Zp-extension and let k∞ be its maximal Zp-power extension. Set Γ = Gal(k∞/k), Γcyc =
Gal(kcyc/k) and Λ = O[[Γ]], Λcyc = O[[Γcyc]]. Set

Γ = Γcyc × Γ1 × · · · × Γr

and let γ? be a topological generator of Γ?. (Note the slight difference here from the
main text where Λ stood for Zp[[Γ]] and r = g + d in the main text.) As above for

m = (mcyc,m1, · · · ,mr) ∈ (Z≥0)r+1

write
Γm := Γcyc/Γ

pmcyc

cyc × Γ1/Γ
pm1

1 × · · · × Γr/Γ
pmr
r

and let km ⊂ k∞ the corresponding extension of k with Galois group Γm.
Let X be a free O-module endowed with a continuous action of Gk. Set X∗ =

Hom(X,µµµp∞) to denote the Cartier dual of X . Suppose that

(H.nA) For any place v of k above p that H0(kv, X ⊗ Φ/O) = H0(kv, X
∗) = 0.

Let r = rankO Indk/QX) and g := r − rankOH
0(R, Indk/QX).

Let P be the set of Kolyvagin primes for X and let N = N (P) denote the square
free products of primes chosen from P . For q ∈ P , let k(q) denote the maximal pro-
p extension of k contained in the class field k(q) of conductor q. For η = q1 · · · qs,
let k(η) := k(q1) · · · k(qs). Set ∆η = Gal(k(η)/k) and Λ(η) := Λ[∆η] = Λ ⊗Zp Zp[∆η].
Observe that

∆η
∼= ∆q1 × · · · ×∆qs .

Through this identification, we view ∆µ (for µ | η) as a subgroup of ∆η. Note then that
we may identify ∆η/µ with ∆η/∆µ.

Lemma A.1. The Λ(η)-module H1(k(η)p, X ⊗ Λ) (of the semi-local cohomology at p) is free
of rank 2r.

Proof. This follows from Corollary 3.13 of [Büy10]. �

Lemma A.2. There is a natural isomorphism

HomΛ(η)(H
1(k(η)p, X ⊗ Λ),Λ(η))

∼−→ HomΛ(H1(k(η)p, X ⊗ Λ),Λ).

Proof. This is evident. The maps are given as follows:

HomΛ(η)(H
1(k(η)p, X ⊗ Λ),Λ(η)) // HomΛ(H1(k(η)p, X ⊗ Λ),Λ)

f =
(
x 7→ f(x) =

∑
δ∈∆η

fδ(x)⊗ δ ∈ Λ⊗∆η

)
� // fid(

x 7→
∑

δ∈∆η
f(xδ)⊗ δ−1

)
g�oo

�

Lemma A.3. For µ | η, the restriction map

resη/µ : H1(k(µ)p, X ⊗ Λ) −→ H1(k(η)p, X ⊗ Λ)∆η/µ

is an isomorphism.
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Proof. Let v be any prime of k(η) above p. Write Dηv for the decomposition group of v
inside ∆η. We may identify Dηv ⊂ ∆η with the local Galois group Gal(k(η)v/k℘) where
℘ ⊂ k is the prime below v. If Dηv is trivial, then H0(k(η)v, X

∗) = H0(k℘, X
∗) = 0. If

Dηv is not trivial, then it is a non-trivial p-group, hence the order of H0 (k(η)v, X
∗[p]) is

congruent modulo p to the order of

H0 (k(η)v, X
∗[p])D

η
v = H0 (k℘, X

∗[p]) = 0,

thus H0 (k(η)v, X
∗) = 0 as well. The lemma now follows from the inflation -restriction

sequence. �

Lemma A.4. The quotient Λ(η)/Λ(η)∆η/µ is free as a Λ(µ)-module.

Proof. Note that the quotient Zp[∆η/µ]
/
Zp[∆η/µ]∆η/µ is a torsion-free, hence also a free

Zp-module. As Λ(η) = Λ(µ) ⊗Zp Zp[∆η/µ] and Λ(η)∆η/µ = Λ(µ) ⊗Zp Zp[∆η/µ]∆η/µ , the
proof of the lemma follows. �

Lemma A.5. The Λ(µ)-module H1(k(η)p, X ⊗ Λ)/resη/µ (H1(k(µ)p, X ⊗ Λ)) is free.

Proof. This follows from Lemma A.1, A.3 and A.4. �

Lemma A.6. For every µ | η and every t ∈ Z+, the map

res∗η/µ : Hom(H1(k(η)p, X ⊗ Λ),Λ(η)t) −→ Hom(H1(k(µ)p, X ⊗ Λ),Λ(µ)t)

is surjective.

Proof. Immediate from Lemma A.2 and A.5. �

Suppose now that we are given a Λ-module homomorphism

Ψ : H1(kp, X ⊗ Λ) −→ Λg

with psuedo-null cokernel5. Using Lemma A.6 above, choose for each η ∈ N a ho-
momorphism Ψ(η) ∈ Hom(H1(k(η)p, X ⊗Λ),Λ(η)g) which are compatible in the sense
that the diagram

H1(k(η)p, X ⊗ Λ)
Ψ(η)

// Λ(η)g

H1(k(η)p, X ⊗ Λ)∆η/µ

?�

OO

(Λ(η)g)∆η/µ

?�

OO

H1(k(µ)p, X ⊗ Λ)
Ψ(µ)

//

∼

OO

Λ(µ)g

∼

OO

commutes and such that Ψ(1) = Ψ.

5In the main body of this article, Ψ will be an appropriate lift C̃ : H1(Fp,T) → Z̃ of a signed Coleman
map, where we recall that Z̃ ∼= Λg contains the image of the signed Coleman map with pseudo-null cok-
ernel. When we are dealing with the Galois representation X = Tρ, we shall use the twisted Coleman
map C̃ρ in place of Ψ. See Section 5 for a detailed construction of these objects.
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Fix a Λ-direct summand L(1) = L of Λg of rank one and set L(η) = L ⊗Zp Zp[∆η].
The Λ(η)-submodule L(η) ⊂ Λ(η)g is a direct summand of rank one and note for every
µ | η that L(η)∆η/µ = L(µ). We define

H1
FL(k(η)p, X ⊗ Λ) := ker

(
H1(k(η)p, X ⊗ Λ)

Ψ(η)

−→ Λ(η)g/L(η)

)
.

Definition A.7. For m = (mcyc,m1, · · · ,mr) ∈ (Z≥0)r, let H1
FL(km(η)p, X) denote the

image of H1
FL(k(η)p, X ⊗ Λ) inside of the free O[∆n × Γm]-module H1(km(η)p, X) of

rank r.

Consider the maps

HomΛ(η) (Λ(η)g/L(η),Λ(η)) ↪→ HomΛ(η) (Λ(η)g,Λ(η))
Ψ(n)∗

−→(1.1)

HomΛ(η)

(
H1(k(η)p, X ⊗ Λ),Λ(η)

)
Choose a basis {ψ(η)

1 , · · · , ψ(η)
g−1} of the free Λ(η)-module HomΛ(η) (Λ(η)g/L(η),Λ(η)),

in a manner compatible with the variation in η. We then have an isomorphism
g−1⊕
i=1

ψ
(η)
i : Λ(η)g/L(η) −→ Λ(η)g−1 .

Let ψ̃i
(η)
∈ HomΛ(η) (Λ(η)g,Λ(η)) under the first map in (1.1). Note that the map

ψη :=

g−1⊕
i=1

ψ̃i
(η)

: Λ(η)g −→ Λ(η)g−1

is surjective with kernel L(η). Define

ϕη := ψ̃
(η)
1 ∧ · · · ∧ ψ̃

(η)
g−1 ∈ ∧g−1HomΛ(η) (Λ(η)g,Λ(η)) ,

where the exterior product is taken in the category of Λ(η)-modules. Note that the
collection {ϕη} is compatible as η varies, by choice. Let

Ξη ∈ ∧g−1 HomΛ(η)

(
H1(k(η)p, X ⊗ Λ),Λ(η)

)
be the image of ϕη under the map induced from Ψ(n)∗.

Proposition A.8. (i) For every η ∈ N , ϕη maps ∧gΛ(η)g isomorphically onto L(η).
(ii) For every c ∈ ∧gH1(k(η)p, X ⊗ Λ) we have Ξη(c) ∈ H1

FL(k(η)p, X ⊗ Λ).

Proof. The proof of (i) is identical to that of [Büy10, Prop. 3.19]. For (ii), consider the
following commutative diagram:

∧gH1(k(η)p, X ⊗ Λ)
Ξη //

Ψ(n)

��

H1(k(η)p, X ⊗ Λ)

Ψ(n)

��

⊇ H1
FL(k(η)p, X ⊗ Λ)

Ψ(n)

��
∧gΛ(η)g ϕη

// Λ(η)g ⊇ L(η)

where for the square in the right, recall that

H1
FL(k(η)p, X ⊗ Λ) = (Ψη)−1(L(η))
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by definition. For c ∈ ∧gH1(k(η)p, X ⊗ Λ), we have ϕη(Ψ
η(c)) ∈ L(η) by (i). By

the commutativity of the diagram above this in turn means that Ψη(Ξη(c)) ∈ L(η),
as desired. �

A.2. Euler systems of rank r and Kolyvagin systems. Suppose in this section that
the hypotheses of Theorem 5.3.3 of [MR04] hold true. They hold in the setting of the
main body of this article.

To ease notation, set

Λα,m := Λ/($α, γp
mcyc

cyc − 1, γp
m1

1 − 1, · · · , γpmrr − 1)

for α ∈ Z+ and m ∈ (Z≥0)r+1 .
Suppose we have an Euler system {cm,η} of rank r attached to the Galois representa-

tion X , in the sense of [Büy10, Definition 3.1] (so that cm,η ∈ ∧gH1
FΛ

(km(η), X), where
the exterior product is taken in the category of O[Γm × ∆η]-modules and FΛ is the
canonical Selmer structure defined as in [MR04, §5.3]). Following the recipe in [PR98,
§1.2.3], one may than obtain an Euler system of rank 1 (or plainly, an Euler system in
the sense of [Rub00]) cΞ = {cΞ

m,η} attached to the collection Ξ = {Ξη} above. Let

κκκΞ = {κΞ
η (α,m) ∈ H1

FΛ
(η)(k,X ⊗ Λα,m)}α,m,η ∈ KS(X ⊗ Λ,FΛ,P)

be the generalized Kolyvagin system attached to cΞ (for the Selmer structure FΛ on
X ⊗ Λ, in the sense of [MR04, Definition 3.1.6]), which is the image of cΞ under the
Euler systems to Kolyvagin systems map of [MR04, Theorem 3.2.4].

Remark A.9. The construction of the Euler systems to Kolyvagin systems map in
[MR04] is given only when Λ = Λcyc. However their arguments extend in a trivial
manner to the more general situation we consider here.

Definition A.10. We define the L-restricted Selmer structure FL on X ⊗ Λ by setting

H1
FL(k`, X ⊗ Λ) = H1

FΛ
(k`, X ⊗ Λ)

for ` 6= p and by letting
H1
FL(kp, X ⊗ Λ) = Ψ−1(L(1))

as above.

Theorem A.11. The (generalized) Kolyvagin system κκκΞ is in fact a (generalized) Kolyvagin
system for the Selmer structure FL on X ⊗ Λ.

Proof. We only need to verify that the classes κΞ
η (α,m) verify the correct local condition

at p, namely that
locp

(
κΞ
η (α,m)

)
∈ H1

FL(kp, X ⊗ Λα,m)

for every α, η,m. Here H1
FL(kp, X ⊗ Λα,m) stands for the image (under reduction

mod ($α, γp
mcyc

cyc − 1, γp
m1

1 − 1, · · · , γpmrr − 1)) of H1
FL(kp, X ⊗ Λ).

Let κ̃η(α,m)Ξ ∈ H1
FηΛ

(k,X ⊗ Λα,m) be the class denoted by κ[km,η,α] (the derivative
class obtained from the Euler system cΞ) in [Rub00, Definition 4.4.10]. As in the proof
of Theorems 3.25 and 3.29 of [Büy10], it suffices to verify that

locp
(
κ̃η(α,m)Ξ

)
∈ H1

FL(kp, X ⊗ Λα,m)

for every η ∈ N , every positive integer α and m ∈ (Z≥0)r+1.
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Let Lm(η) ⊂ O[Γm ⊗ ∆η]
g denote image of L(η) ⊂ Λ(η)g. Note that Lm(η) is a free

rank-1 direct summand of O[Γm ⊗∆η]
g.

Let cΞ
∞,η := {cΞ

m,η}m ∈ H1(k(η), X ⊗ Λ). By the defining property of Ξ we have
Ψη
(
locp

(
cΞ
∞,η
))
∈ L(η). Upon reduction modulo ($α, γp

mcyc

cyc − 1, γp
m1

1 − 1, · · · , γpmrr − 1)
we conclude that

Ψη
(
locp

(
cΞ
m,η

))
∈ Lm(η)

for every η and m.
Let Dη ∈ O[∆η] be the derivative operator defined as in [Rub00, §4]. As the maps

Φ(η) and locp are ∆η-equivariant, it follows that

Ψη
(
locp

(
Dηc

Ξ
m,η

))
∈ Lm(η)

as well. On reduction mod $α we see that

(1.2) Ψη
(
locp

(
Dηc

Ξ
m,η mod$α

))
∈ Lm(η)/$α · Lm(η)

The fundamental property of the derivative operator Dη is that we have

Dηc
Ξ
m,η mod$α ∈ H1

FηΛ
(k(η), X ⊗ Λα,m)∆η .

Combining this fact with (1.2) we conclude that

(1.3) Ψη
(
locp

(
Dηc

Ξ
m,η mod$α

))
∈ (Lm(η)/$α · Lm(η))∆η .

By definition, the element κ̃η(α,m)Ξ is a canonical inverse image of Dηc
Ξ
m,η mod$α

under the restriction map

res : H1
FηΛ

(k,X ⊗ Λα,m) −→ H1
FηΛ

(k(η), X ⊗ Λα,m)∆η .

Thus,

(1.4) res
(
locp

(
κ̃η(α,m)Ξ

))
= locp

(
Dηc

Ξ
m,η mod$α

)
.

Consider the following commutative diagram:

H1(k(η)p, X ⊗ Λα,m)∆η
Ψ(η)

// (O/$αO [Γm ⊗∆η]
g)∆η ⊇ (Lm(η)/$α · Lm(η))∆η

H1(kp, X ⊗ Λα,m)
Ψ //

res

OO

O/$αO [Γm]g

∼

OO

⊇ Lm(1)/$α · Lm(1)

∼

OO

where the isomorphism on the very right is because the O/$αO [Γm ⊗ ∆η]-module
Lm(η)/$α · Lm(η) is free. By the commutativity of this diagram along with (1.2) and
(1.4) it follows that

Ψ
(
locp

(
κ̃η(α,m)Ξ

))
∈ Lm(1)/$α · Lm(1)

which is precisely to say that

locp
(
κ̃η(α,m)Ξ

)
∈ H1

FL(kp, X ⊗ Λα,m)

as desired. �



RUBIN-STARK KOLYVAGIN SYSTEMS AND SUPERSINGULAR IWASAWA THEORY 39

A.3. Applications. Suppose throughout this section that:

(H.dR) X is de Rham at every place v of k above p.
(H.wL) The cohomology class cΞ

∞,1 ∈ H1(k,X ⊗ Λ) is non-trivial.

The second hypotheses implies by [Rub00, Theorem 2.3.2] that the weak Leopoldt
conjecture holds true for X :

Theorem A.12. Under the running hypotheses the Λ-module H1
F∗Λ

(k, (X ⊗ Λ)∗)
∨ is torsion.

This assertion is equivalent by the Poitou-Tate global duality to the following:

Corollary A.13. The Λ-module H1
FΛ

(k,X ⊗ Λ) has rank g.

Consider the following hypothesis:

(H.V) The Ψ-strict Selmer group

H1
FΨ

(k,X ⊗ Λ) := ker
(
H1
FL(k,X ⊗ Λ)

Ψ ◦ locp−→ Λg
)

is trivial.

In specific applications this hypothesis will hold true for a certain Selmer group de-
termined by a choice of a signed Coleman map in place of Ψ. Let F∗Ψ denote the dual
Selmer structure on (X ⊗ Λ)∗ defined as in [MR04, Definition 1.3.1].

Write cm,1 = c
(1)
m ∧ · · · ∧ c

(g)
m ∈ ∧gH1

FΛ
(km, X) and define

c∞ := c1 ∧ · · · ∧ cg := {locp
(
c

(1)
m

)
∧ · · · ∧ locp

(
c

(1)
m

)
}m ∈ lim←−

m

∧gH1(km,p, X)

= ∧gH1(kp, X ⊗ Λ)

where the last equality holds true thanks to our running hypothesis (H.nA) (from
which follows that the Λ-module H1(kp, X ⊗ Λ) is free, the map H1(kp, X ⊗ Λ) →
H1(km,p, X) is surjective and therefore the O[Γm]-module H1(km,p, X) is free.)

Theorem A.14 (The Ψ-main conjecture). Under our running hypotheses,

(i) the Λ-module H1
F∗Ψ

(k, (X ⊗ Λ)∗)∨ is torsion and

det ([Ψ(ci)]
g
i=1) ∈ char

(
H1
F∗Ψ

(k, (X ⊗ Λ)∗)∨
)
,

(ii) let ccyc = ccyc
1 ∧ · · · ∧ ccyc

g ∈ ∧gH1(kp, X ⊗ Λcyc) denote the image c. Then the charac-
teristic ideal of the Λcyc-module H1

F∗Ψ
(k, (X ⊗ Λcyc)

∗)∨ contains det ([Ψ(ccyc
i )]gi=1).

(iii) If further the associated Kolyvagin system κκκΞ is primitive, then the characteristic ideal
of the Λcyc-module H1

F∗Ψ
(k, (X ⊗ Λcyc)

∗)∨ is generated by det ([Ψ(ccyc
i )]gi=1).

Proof. By (H.V) it follows that the map

H1
FL(k,X ⊗ Λ)

Ψ ◦ locp−→ L(1)

is injective. We therefore conclude by our assumption (H.wL) that the quotient

H1
FL(k,X ⊗ Λ)/Λ · cΞ

∞,1
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is Λ-torsion. As a consequence of Theorem A.11 (and applying the Kolyvagin system
machinery (via an enhancement of [MR04, Theorem 5.3.10] using the “dimension re-
duction trick” due to Ochiai, as given in [Och05, pp. 145]) for the Kolyvagin system
κκκΞ for the Selmer structure FL, whose initial term is by definition cΞ

∞,1) we see that

(1.5) char
(
H1
F∗L

(k, (X ⊗ Λ)∗)∨
)
| char

(
H1
FL(k,X ⊗ Λ)/Λ · cΞ

∞,1
)
6= 0 .

Poitou-Tate global duality yields an exact sequence

0→ H1
FL(k,X ⊗ Λ)/Λ · cΞ

∞,1 −→ L/Λ ·Ψ ◦ locp
(
cΞ
∞,1
)
−→H1

F∗Ψ
(k, (X ⊗ Λ)∗)∨

−→ H1
F∗L

(k, (X ⊗ Λ)∗)∨ → 0

Upon taking characteristic polynomials and using (1.5) we conclude that

(1.6) char
(
H1
F∗Ψ

(k, (X ⊗ Λ)∗)∨
)
| char

(
L/Λ ·Ψ ◦ locp

(
cΞ
∞,1
))

By Proposition A.8 and the choice of Ξ, we have an isomorphism

(∧gΛg) /Λ · (Ψ(c1) ∧ · · · ∧Ψ(cg))
ϕ−→ L/Λ ·Ψ ◦ locp

(
cΞ
∞,1
)
.

The proof of (i) follows. In fact the same proof (without appealing to the work of
Ochiai and slightly modifying the proof of [MR04, Theorem 5.3.10(i)]) applies to con-
clude with the proof of (ii) as well. The proof of (iii) is identical to the proof of [MR04,
Theorem 5.3.10(iii)] (After replacing the Selmer structure denoted by FΛ on the Λcyc-
adic Galois representation T in loc.cit. with the Selmer structure FL on X ⊗ Λcyc). �

APPENDIX B. L-RESTRICTED KOLYVAGIN SYSTEMS REVISITED

In this Appendix we recall a result that the first author proved in [Büy13b] which
shows the existence of Kolyvagin systems for the Selmer structure FL on T. Even
though these Kolyvagin systems do exist unconditionally, they are related (via The-
orem A.11) to the L-restricted Kolyvagin system κκκΞ obtained from the (conjectural)
Perrin-Riou-Stark elements and that we utilized above.

Let P be the set of places of F that does not contain the archimedean places, primes
at which T is ramified and primes above p. Set r = 1 + g + δ (where δ is Leopoldt’s
defect for F ) so that Γ ∼= Zrp. Choose a decomposition

Γ = Γ1 × · · · × Γr

where each group Γi is isomorphic to Zp. Fix a topological generator γi of the group
Γi. We then have a (non-canonical) isomorphism

Λ ∼= O[[γ1 − 1, · · · , γr − 1]] .

To ease notation, set R = Λ.

Definition B.1. For k ∈ Z+ and ᾱ = (α1, · · · , αr) ∈ (Z+)r, set

Rk,ᾱ := R/($k, (γ1 − 1)α1 , · · · , (γr − 1)αr),

Tk,ᾱ := T⊗R Rk,ᾱ = T/($k, (γ1 − 1)α1 , · · · , (γr − 1)αr)

and define the collection

Quot(T) := {Tk,ᾱ : k ∈ Z+ and ᾱ = (α1, · · · , αr) ∈ (Z+)r}.
The propagation of the Selmer structure FL (in the sense of [MR04]) to the quotients
Tk,ᾱ will still be denoted by the symbol FL as well as its propagation to T .
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Definition B.2. For ᾱ ∈ (Z+)d and k ∈ Z+, define

(i) Hk,ᾱ = ker
(
GF → Aut(Tk,ᾱ)⊕Aut(µµµpk)

)
,

(ii) Lk,ᾱ = F
Hk,ᾱ ,

(iii) Pk,ᾱ = {Primes λ ∈ P : λ splits completely in Lk,ᾱ/F}.
The collection Pk,ᾱ is called the collection of Kolyvagin primes for Tk,ᾱ. Define Nk,ᾱ to
be the set of square free products of primes in Pk,ᾱ.

Theorem B.3. Let P1,1̄ ⊂ P be as in Definition B.2.

(i) The R-module KS(T,FL,P) is free of rank one, generated by any Kolyvagin system
κκκ whose image κκκ ∈ KS(T ,FL,P1,1̄) is non-zero. Such a Kolyvagin system is called
primitive.

(ii) Suppose κκκ ∈ KS(T,FL,P) is primitive. Then the image κκκcyc of κκκ generates the Λcyc-
module KS(Tcyc,FL,P). Furthermore,

char
(
H1
FL

(F,T)/Λ · κ1

)
⊂ char

(
H1
F∗L

(F,T∗)∨
)

and
char

(
H1
FL

(F,Tcyc)/Λ · κcyc
1

)
= char

(
H1
F∗L

(F,T∗cyc)
∨
)
.

Remark B.4. It is the statement of Theorem B.3(ii) that is the key to all our results in
the main body of this article. Indeed, we know by Theorem A.11 that the Perrin-Riou-
Stark Kolyvagin system κκκPS (obtained from Perrin-Riou-Stark elements first applying
the twisting morphism tw then the descent procedure in Appendix A with X = T )
is an element of the cyclic R-module KS(T,FL,P). We are able to prove (see The-
orem 7.7) that this Kolyvagin system is indeed primitive. Since κPS

1 = tw(cΞ
F∞) by

construction (where we recall that cΞ
F∞ ∈ H

1
FL

(F,Tρ) is obtained from the conjectural
Rubin-Stark elements along the tower F∞/F following the recipe in Section A.2), the
containment in Theorem B.3(ii) translates into

char
(
H1
FL

(F,T)/Λ · tw(cΞ
F∞)
)
⊂ char

(
H1
F∗L

(F,T∗)∨
)

;

and the equality in this theorem into

char
(
H1
FL

(F,Tcyc)/Λ · tw(cΞ
F∞)cyc

)
= char

(
H1
F∗L

(F,T∗cyc)
∨
)
.

We note that all characteristic ideals that appear in these two statements are in fact
non-zero, as we have explained in the main body of this text (see Remark 7.5).

The proof of Theorem B.3 is identical to that of [Büy13b, Theorem A.14] and in
what follows, we only indicate the key points in the argument and state some of the
technical consequences which we also need in the main body of this article.

For ᾱ = (α1, · · · , αr), β̄ = (β1, · · · , βr) ∈ (Z+)r, we write ᾱ ≺ β̄ (resp., ᾱ � β̄)
whenever αi ≤ βi (resp., whenever αi ≥ βi) for all i = 1, · · · , r. The following should
be compared to Definition 4.1, Propositions 4.3 and 4.10 of [Büy13a]. This is the key
property that allows us to prove Theorem B.3.

Theorem B.5. Let F stand for any of the Selmer structures FI or FL on T. Then F is
cartesian on the collection Quot(Tρ) in the following sense. Let λ be any prime of F .
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(C1) For ᾱ ≺ β̄ and k ≤ k′, H1
F(Fλ,Tk,ᾱ) is the exact image of H1

F(Fλ,Tk′,β̄) under the
canonical map H1(Fλ,Tk′,β̄)→ H1(Fλ,Tk,ᾱ).

(C2) Given ᾱ = (α1, · · · , αr) as above set ᾱ+,i := (· · · , αi−1, αi + 1, αi+1, · · · ). Then,

H1
F(Fλ,Tk,ᾱ) = ker

(
H1(Fλ,Tk,ᾱ) −→

H1(Fλ,Tk,ᾱ+,i
)

H1
F(Fλ,Tk,ᾱ+,i

)

)
.

Here the arrow is induced from the injection Tk,ᾱ
[γi−1]−→ Tk, ¯α+,i

and [γi − 1] is the
multiplication by γi − 1 map.

(C3)

H1
F(Fλ,Tk,ᾱ) = ker

(
H1(Fλ,Tk,ᾱ)

[$]−→ H1(Fλ,Tk+1,ᾱ)

H1
F(Fλ,Tk+1,ᾱ)

)
,

where the arrow is induced from the injection Tk,ᾱ
[$]−→ Tk+1,ᾱ.

Proof. The proof of this theorem (in even more general form) may be found in our
companion article, c.f. the proof of [BL14, Theorem C.8]. The crucial point observed
in loc.cit. is that we have a natural identification

H1
F(Fp,T)⊗Rk,ᾱ = H1

F(Fp,Tk,ᾱ)

for F = FI or FL. �

Corollary B.6. Propagations of both Selmer structures FL and FI on T verify the hypothesis
H6 of [MR04].

Proposition B.7. The core Selmer rank χ(T ,FL) equals 1 whereas χ(T ,FI) equals 0.

Proof. Both assertions follow from Lemma 6.13. �

APPENDIX C. EQUIVARIANT COLEMAN MAPS

Let K be a finite unramified extension of Qp containing a completion of F and let E
a finite extension of Qp. We write HK = Gal(K/K(µp∞)). Throughout this appendix,
we fix T a free OE-module of rank t that is equipped with a continuous action of GF .
Let r = [K : Qp], s = [E : Qp] and d = st. We assume that the hypotheses (H.F.-L.)
and (H.S) in [BL14] hold when we regard T as a Zp-representation of GF . Only in this
appendix Λ = Zp[[Γcyc]] and ΛOE = OE[[Γcyc]].

Lemma C.1. The Dieudonné module DK(T ) has a natural OE-module structure. Moreover,
the action of ϕ on DK(T )⊗Zp Qp is E-linear and DK(T ) is a filtered OE-module.

Proof. Recall that DK(T ) =
(
Acris ⊗Zp T

)HK . The action of OE on T therefore equips
DK(T ) with an OE-module structure. The action of ϕ on DK(T ) is in fact given by the
restriction of ϕ ⊗ 1 on Acris ⊗Zp T , hence it commutes with the action of OE defined
above. Similarly, as FiliDK(T ) = (tiAcris⊗Zp T )HK , it respects theOE-module structure.

�

Let u1, . . . , us be a Zp-basis of OE . Note that ui ∈ O×E for all i.
By Lemma C.1, we may fix an OE basis w1, . . . wrt of DK(T ) where w1, . . . , wrt0 gen-

erate Fil0DK(T ) over OE . Then {uiwj : 1 ≤ i ≤ s, 1 ≤ j ≤ rt} is a Zp-basis of DK(T ).
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There is a natural identification

H⊗Zp DK(T )→ HE ⊗OE DK(T )

F ⊗ (uiwj) 7→ (uiF )⊗ wj.

Lemma C.2. Under the above identification, the regulator map

LKT : H1
Iw(K,T )→ HE ⊗OE DK(T )

is ΛOE -linear.

Proof. If we write DK(T ) = (B ⊗Zp T )HK for the (ϕ,Γ)-module of T , we may identify
H1

Iw(K,T ) with DK(T )ψ=1. Under this identification, LKT is given by M◦ (1−ϕ), where
M is the Mellin transform (see [LLZ11, Definition 3.4]). Since ϕ acts on B, but not T ,
whereas OE acts on T , but not B, the two actions commute. Hence, we are done. �

Therefore, we may write

LKT =
rt∑
i=1

wiLKT,i

where LKT,i are ΛOE -linear maps from H1
Iw(K,T ) toHE .

By Lemma C.1, the action of ϕ on D(T )⊗Zp Qp is E-linear. Let CE
ϕ be the matrix of ϕ

with respect to the basis {wj}. Then, as in [BL14, §2.2], CE
ϕ is of the form

C

(
Irt0 0
0 1

p
Ir(t−t0)

)
for some C ∈ GLd(OE). This allows us to construct a logarithmic matrix ME

T whose

entries are all o(log) with determinant, upto a unit in OE ,
(

log(1+X)
pX

)r(t−t0)

. The same
calculations as in [BL14, §2.3] shows that there is a decomposition

LKT =
(
w1 · · ·wrt

)
·ME

T · ColK,ET .

where ColK,ET : H1
Iw(K,T )→ Λ⊕rtOE is ΛOE -linear.

Recall the the reciprocity law of Colmez-Perrin-Riou states that the determinant of

LKT over Λ is, upto a unit, equal to
(

log(1+X)
p

)r(d−d0)

. But

det ΛLKT =
(

det ΛOE
LKT
)s
,

so the determinant over ΛOE is, upto a unit, equal to
(

log(1+X)
p

)t(d−d0)

. Therefore, we
may carry out the same calculations as in [BL14, §2.4] and conclude that for any subset
I ∈ {1, . . . , rt} and any character η of conductor p or 1,

det

(
Im

(⊕
i∈I

ColK,ET,i

)η)
= Xn(I,η)

for some integer n(I, η) ≥ 0. Furthermore, when the basis of Dp(T ) we have fixed is
strongly admissible in the sense of [BL14, Definition 3.2] then we may take n(I, η) = 0.
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