FUNCTIONAL EQUATIONS FOR MULTI-SIGNED SELMER
GROUPS

ANTONIO LEI AND GAUTIER PONSINET

ABSTRACT. We study the functional equation for the multi-signed Selmer
groups for non-ordinary motives whose Hodge-Tate weights are 0 and 1, defined
by Biiyiikboduk and the first named author. This generalizes simultaneously
Greenberg’s result for ordinary motives in and Kim’s result for supersingular
elliptic curves. Abelian varieties and functional equations and non-ordinary
primes.

1. INTRODUCTION

Let p be an odd prime and F’ a fixed number field in which all primes above p are
unramified. Furthermore, we assume that F//Q is an abelian extension with [F' : Q]
coprime to p. Let M be amotive defined over F'. In [Gre89], Greenberg developed
an Iwasawa theory for a p-ordinary motive M. In particular, he showed that its
p-Selmer group over the Z,-cyclotomic extension F,, of F satisfies a functional
equation, namely,

Sel, (M Fa) ~ Sel,(M/Fx)",

where M is the dual motive of M, A ~ B means that A and B are pseudo-
isomorphic as Z,JGal(Fs /F)K-modules and ¢ is the involution on the Iwasawa
algebra that sends o to o~ ! for 0 € Gal(F/F). This result has been generalized
to elliptic curves with supersingular reduction at p by Kim [Kim08]. That is,

+ + L
SelX(E/Fay) ~ Sel£(E/Fu)",

where F is an elliptic curve with a,(F) = 0 and SeI;t(E /Fs) are Kobayashi’s plus
and minus Selmer groups from [Kob03].

Let M, be the p-adic realization of M. Let g := dimg, (Indp/gM,) and g4 :=
dimg, (Indp /QMP)C:il, where c is the complex conjugation. We shall assume that
M, satisfies:

(H.HT) The Hodge-Tate weights of M, are either 0 or 1;

(H.crys) M, is crystalline at all primes p|p of F}

(H.Frob) The slopes of the Frobenius on the Dieudonné module D,(M,) lie inside

(0, —1] and that 1 is not an eigenvalue;
(HP) g4 = g— and dimg, Fil'D,(M,) = g_.

Note that (H.-HT) would essentially force us to restrict our attention to abelian
varieties. In this case, (H.crys) means that it has good reduction at all primes
above p. If furthermore it has supersingular reduction at p, then the Frobenius has
constant slope —1/2 on the Dieudonné module, which implies (H.Frob). In general,
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if M is irreducible and pure, then Tate’s conjecture for M,, would imply (H.P) (c.f.
[BL15b, Remark 1.3]).

Under these hypotheses, a family of multi-signed Selmer groups Sel;(M/F,)
has been defined using the theory of Coleman maps in [BL15b] (see §2 below for
a review). Here, I corresponds to a choice of a sub-basis of D,(M,). These
Selmer groups generalize Kobayashi’s plus and minus Selmer groups in [Kob03]
and Sprung’s # /b-Selmer groups in [Spr12] for supersingular elliptic curves.

The main result of this article is the following theorem.

Theorem A (Theorem 5.2). Suppose that H*(Fs, M)/) = 0, where M,/ denotes
the Pontryagin dual of M,,. Furthermore, suppose that I is a choice of basis satis-
fying #I = g4 = g—. Then, we have the functional equation

Sel; (M/Fx) ~ Selye(M/Fs ),
where 1¢ corresponds the sub-basis of Dp(M,)) that is dual to I.

In [BL15b], the multi-signed Selmer groups are conjectured to be cotorsion over
Z,JGal(Fs/F)K. Furthermore, a main conjecture relating them to some multi-
signed p-adic L-functions has been formulated. We remark that Theorem A holds
even without the cotorsionness of the Selmer groups. In fact, it gives evidence
to the main conjecture because the L-functions are expected to satisfy a similar
functional equation.

The structure of this paper is as follows. We first review the construction of
multi-signed Selmer groups of [BL15b] in §2. We then show that the local conditions
of these Selmer groups satisfy an orthogonality condition and a control theorem in §3
and §4 respectively. These two results allow us to conclude the proof of Theorem A
using techniques of Greenberg and Kim, which is the content of §5. Finally, we
explain in §6 that our result applies to abelian varieties and allows us to obtain the
following theorem.

Theorem B (Theorem 6.1). Let A be a g-dimensional abelian variety defined over
F with supersingular reduction at all primes above p. Then, for any I such that
#I = g, the dual Selmer groups Sel;(A/F(pp))" and Selje(AY/F(pp))V" are
pseudo-isomorphic Z,JGal(Fu /F)K-modules.
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2. REVIEW OF THE CONSTRUCTION OF MULTI-SIGNED SELMER GROUPS

Let us first introduce some notation. Let I" be the Galois group Gal(Q, (tp)/Q,).
Given any unramified extension K of Q,, we shall abuse notation and write I' for
the Galois group Gal(K (up=)/K) as well. We may decompose I as A x I''| where
A is cyclic of order p — 1 and ' = m is isomorphic to the additive group Z,. We
shall denote by K the subfield of K (u,=) fixed by A, thus K is a I''-extension
of K and we also set K,, the subextention of K, such that I''/T} ~ Z/p"Z, where
Il = Gal(Ky/K,).
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We write A for the Iwasawa algebra Z,JI'K. We may identify it with the set of
power series Zn>0,aeA ano -0 (y—1)" where a,, , € Z,. We denote by ¢ : A — A
the involution induced by o + o~ ! for ¢ € T' and we identify v — 1 with the
indeterminate X. Similarly, we write A! := Z,JI''K, and we identify it with Z,J XK
in the same way.

Let M be a A-module, n a Dirichlet character modulo p. We write e, =
p—il > pea (o) to € Zy[A] for the idempotent corresponding to 7. The n-isotypic
component of M is defined to be e, - M and denoted by M". Note that we may
regard M" as a ZpJXK-module. We denote by M* the A-module whose action is
twisted by ¢. Also, we write M := Hom(M,Q,/Z,) the Pontryagin dual of M.

We define H to be the set of elements Zn>O7U€A (n,o-0-(y—1)" where a,, , € Q,
are such that the power series > -, an o X " converges on the open unit disc for all
o€ A. a

Suppose now that M is a motive satisfying (H.HT), (H.crys) and (H.Frob) as in
the introduction (but not (H.P) for the time being). Fix a G stable Z,-lattice T'
inside M,, and write T for the Cartier dual Hom(T', i, ). For each prime p|p of
F, we write Dp, (T') for the Dieudonné module of the local representation T'|c,, -
Let

D,(T) = P Dr, (1),
plp
which admits the Frobenius action ¢ : D,(T) — D,(T) ® Q, and a filtration
Fil*D,(T). We assume:
(H.P") ranky, Fil®D,(T) = g_.
Fix a Z,-basis v1,...,v, of D,(T') such that vy,...,v, generate Fil® D,(T). By
(H.HT), the matrix of ¢ with respect to this basis is of the form

I 0
C,=C - ) ,
v ( 0 519+

where I,, denote the identity matrices of rank g+ and C' is some matrix inside
GL4(Zp). As in [BL15b, Definition 2.4], we may define for n > 1,
I ‘ 0
1 Cy = 4
(1) ( 0 | Ppr(14X)1y,

>c—1 and M, = (C,)"""C,---Cy,

where ®,» denotes the p"-th cyclotomic polynomial. By Proposition 2.5 in op. cit.,
the sequence M,,, n > 1 converges to some g X g logarithmic matrix over H, which
is denoted by M.

For each prime p|p of F', we write

Hllw(FPVT) = @Hl(Fp(ﬂp”)vT)v
where the connecting map is the corestriction maps. This allows us to define
HIIW(Fpa T) = @ Hllw(va T)
plp

The dual of Perrin-Riou’s exponential map from [PR94] gives a A-homomorphism

Lr: HL (Fp, T) = H @z, Dy(T).
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By [BL15b, Theorem 2.13], the logarithmic matrix My allows us to decomposes L
into

Colr
(2) ﬁT:(Ul Ug)'MT~ ,
Colr 4
where Colr;, i = 1,...,g are A-homomorphisms from H} (F,,T) to A, and we

shall denote by Coly the column vector that appears on the right-hand side. The
images of these maps are described in §2.5 of op. cit.. For I C {1,...,g}, we
shall write Colr ; for the direct sum EBZ-E ; Colr ;. We record the following result
(Proposition 2.21 and Corollary 2.22 of op. cit.), which we shall make use of later
on in this article.

Proposition 2.1. Let I C {1,...,g} andn a character on A. Then, Im (Colr )" is
contained in a free Z,JXK-module of rank #I inside @, ; Z,JXK. Furthermore,
this inclusion is of finite index.

iel

We recall equally the following result on the kernel of the Coleman maps (Lemma 3.22
of op. cit.), which we shall need.

Lemma 2.2. For any I C {1,...,g}, the A-module ker(Colr 1) is free of rank
g—F#1.

Using these Coleman maps, the multi-signed Selmer groups are defined in §3.4
of op. cit. For a fixed I C {1,...,g}, with #I = g, we define H} (F(upe)p, T)
to be the orthogonal complement of ker Coly ; under the (semi-)local Tate duality

Hllw(vaT) X HI(F(MP"C’)%TT) = Qp/Zy,
where H'(F(pip=)p, TT) denotes D, HY(F(pp=)p, T1). Here, the pairing is de-
fined to be the sum of the local Tate pairings for all p|p. The I-Selmer group of T'f
over F(jp~) (denoted by Sel;(TT/F(up=))) is defined to be

HY (F (=)o TV H(F (e )y T
ker | HY(F(pp=), TT) — e pr 7
? %H}(F(Up‘x’)mTT) H(F(ppe=)p, TT)
where H}(F(pipe)y, T') for v { p is the unramified subgroup of H'(F(pipe )y, T').
The even isotypic components of the I-Selmer group are predicted to be cotorsion:

Conjecture 2.3. For all I as above and any even charactersn on A, Sel; (T /F(pe))"
is a cotorsion ZyJ XK-module.

See [BL15b, Proposition 3.28] for a partial result. If we replace (H.P’) by the
stronger hypothesis (H.P), then the calculations in loc. cit. may be generalized to
odd characters 7 on swapping the roles of g, and ¢g_ throughout (c.f. Remark 1.7
of op. cit. for a detailed explanation).

3. ORTHOGONALITY OF LOCAL CONDITIONS

As in §2, we assume that (H.HT), (H.crys) and (H.Frob) hold in this section. Let
z be an element of H}. (F,,T), we denote by z,, its component in H'(F(ppn)p, T).
Let (~,~), be the (semi-)local Tate pairing

(~y ) HY(F (e ), T) % H (F (g ), T (1)) = Zp.
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If z and y are elements of H{, (F,,T) and H, (F,, T*(1)) respectively, the elements

Z <37na U(yn)>n S ZP[F/FPH]

cer/re"

are compatible with respect to the natural projection maps for n > 0. Thus, on
taking inverse limit, one can define the Perrin-Riou pairing

<N7 N) : Hllw(vaT) X Hllw(Fp’T*(l)) — A
There is also a natural pairing
Dr, (T) x Dp, (T*(1)) — Zp,
thus a pairing
[~ ] Dy (T) x Dy (T (1)) = Zy,

for which Fil' D,,(T*(1)) = Fil' D, (T)*.
We denote C; the matrix of the Frobenius on D, (7™(1)) with respect to the dual

basis v],...,v;. From duality we have the relation
w1 —1\t _ (=1t lIgi 0
CLp - p (CAP ) - (C ) ( 0 Ig+ ’

As in (1), we may define
(3)
Mrp-q) = lim (C;)nﬂ Cr---Cf, where C; = < Cpr(L+X)I | O )Ct
n

0 T

9+

Analogous to (2), we have the decomposition

(4) ‘CT*(I) = (’Ull s U;) . MT*(I) . COIT*(I),
where Colrp- (1) is the column vector of Coleman maps with respect to the basis
Vi, U

Perrin-Riou’s explicit reciprocity law from [PR94, §3.6] (proved by Colmez [Col98,
§IX.4]) tells us that

(5) [Lr(2), Lrey(2')] = —o—1 - 4o - (2,2]),

where o_; is the unique element of I' of order 2 and ¢y = lolgo)g(gy) with x being
the cyclotomic character. The explicit reciprocity law we stated is slightly different
from the one stated in op. cit. See [LZ14, Theorem B.6] for a proof of the above

formulation.

Lemma 3.1. Let z € H} (F,,T) and 2’ € H}, (F,,T*(1)). Then

log(1+ X
[ET(Z),[,T*(D(Z/)] = g(p)() ' COIT(Z)t : COIT*(I)(z/)'
Proof. Since vy, ..., v, is dual to v, ..., vy, the decompositions (2) and (4) give

[ﬁT(Z), ‘CT*(l)(zl)] = COIT(Z)t . MTt . MT*(U . COIT*(l)(Z/).
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Using (1) and (3), we may compute
t
Myt My = (i (C,)" G 1) - (tim (C3)"H €5 )
— i (0f-- (0" ()" )

= lim e ;}:[1 ,n(1+ X)I,

n+1

_ log(1+X) I
- pX g-

O

Lemma 3.2. Let I C {1,...,g} and I° its complement. Then ker Colp- (1) s is the
orthogonal complement of ker Coly 1 with respect to the pairing (-,-).

Proof. Let z € H} (Fp,T) and 2’ € H{, (F,,T*(1)). By the explicit reciprocity law
(5) and Lemma 3.1, we have

(2,2") =0 & [Lr(2), Lp-1) ()] = 0
& Colg(2)" - Coly.(1)(2") = 0.
Thus, if z € ker Colr,
(6) (z,2y=0& Z Coly x(z) - Colps(1) 1 (2") = 0.
kgl

So, ker Colg+(1) - is included in the orthogonal complement of ker Colr ;.
Lemma 2.2 implies that for all k € {1,..., g}, there exists z; such that

—0 ifje{l,....g}\ k),
Cdﬂﬂnq{#g e s\

In particular, if k& ¢ I, then such z; € kerColy ;. If 2 € (ker CO]T,[)L, then
(zr,2") = 0. Therefore, (6) tells us that Colp«(1),(2’) = 0. Since this is true for all
k € I¢, we have 2/ € ker Colr=(1),7e as required. ([l

4. CONTROL THEOREM

Once again, the hypotheses (H.HT), (H.crys) and (H.Frob) are in effect through-
out this section. We first deal with the case F' = QQ and then explain how to extend
the results of this section to general F. Let f be an irreducible distinguished poly-
nomial in A!, e and m positive integers. Set

T}, =Tt @, AV/(F9), T*()] ey == T (1) @2, AL/ (f)-

Then Hom(T}Le [P™], ppm) =~ T*(I)Ife)b[pm] and the pairing TT[p™] x T*(1)[p™] —
ppm induces a perfect Zy-linear Gg-equivariant pairing T!. [p™] % T*(l)z Foy p™] —

Hhpm .
In the following, we assume:

(H.F) H(Q,(ppe), TT) is finite
(HnT) H°(Qp oo, TT) = 0.
Let A € {TT7TTG,T*(l)T,T*(l)Ife)L}. Since the absolute Galois group of Q,
acts trivially on A'/(f¢), (H.F) and (H.nT) are satisfied by T}., and (H.F) and
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(H.nT) also hold for T%(1)! by duality. The hypothesis (H.nT) together with the
inflation-restriction sequence allow us to identify

HY(Qpn, A) ~ H (Qp 00, ).

Furthermore, the long exact sequence induced from 0 — A[p™]| — A LANREN 0,
together with hypothesis (H.nT), give

H'(Qpn, Ap™)) = H' (Qpn, A)p™]-
ForI C {1,...,g}, wedefine H}(Q, ,T") as the inverse image of H}(Q,(pzpe), TT)4
by the restriction map
HY (Qpoo, TT) = HY (Qplpp=), TN,
which is an isomorphism by hypothesis (H.F) and inflation-restriction sequence as
A is of order (p—1) and H°(Q,(pp= ), TT) is finite of order a power of p. We define
also
H} Qpoo The) = HHQpoo, T @ AY/() € H'(Qpooo, Te)
H}(me,T}e) = H}(Qp,omTT&)Gal(Qp’OC/QP’") - Hl(Qp,naT}e)
H}(Qpn, T} [p™]) = H}H Qs T} [P C HY(Qp, T} [p™)).

and similarly for the dual T*(l)T.
For n > 0, we write F,, = Qgg;. Set

s/ =ten 00 = T3y < g |

w’fp

where A € {T1, T[., T [p™), T} [p™], T*(1)|, T*(1)] . )HT*<1>*[pm1,T*(l){,ce)b[pmn.
To simplify the notation, we shall write

A for Tt T}S,T*( ) or T*(1 )(f)
A, for A[p™],

A*  for the dual of A (e.g. T*(l)Jr if A=T"),
Ax, for A*[p™],

and

Hloc(Fn y,') {Hf(F” Ua.) lfop’

H}(F,.,,e) otherwise.

Here H} is the unramified subgroup for v { p.

Lemma 4.1. Let Xgi0p..5, (Am) be the global Euler characteristic of A, over F,.
Let I C {1,...,g9} and write I¢ for its complement. Then,

Xglob.,F, (Am) : [Hl(@p,na Am) : H[l (Qp,naAm)]-

Proof. We only prove the lemma for A = TJL, which would imply the other cases.
Let ¥ be a finite set of places of Q containing all places where T is ramified, all
places over p and the infinite place. We write 3X(F),) for the places of F,, dividing
those in ¥ and let Qx; be the maximal extension of Q unramified outside . Then
SI(Am/Fn) c Hl(QE/an Am)'

#SI(Am/Fn> =
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Set
Pi = HveE(F )H (Fp,s m) and Py’ = HveE(Fn) H(F, ., A%),
= Hl( s Am) and Ly = H}C(Q%mA:l),
L, := Hf(Fn vy Am) and L} := H}(FH,U,A;‘H) for v 1 p,
L:= Hvez(Fn) L, and L*:= HveE(Fn) L*
Let
Nt HY Qg /Fn, Am) — P&
be the restriction map and write
Gl :i=Im )\, K':=ker)\. .

We have similarly A\*¢ G*¢ K* for A*. For all v € ¥(F},) the orthogonal comple-
ment of L, under the local Tate pairing is L¥ (this is a classical result when v { p
and Lemma 3.2 when v = p). Thus we have

#S1(Am/Fn) = #K' - #(G' N L) = #K' - #G"-#L-#(G' - L)%
Since #K' - #G' = #H"(Qx/F,, A), and by duality #(G' - L) = #PL/#(G*' n
L*), we get
#S1(Am/Fp) = #H" (Qs/Fp, Ap) - #L - #(G™' N L*) [#P5.
By (H.uT), we have
#H' (Qs/Fn, Am) = Xalob., 7, (Am) ™" - #H(Qx/F, Ap) - #H?(Qs/ Fr, Ar)
- Xglob F, ( ) #H2(QE/F7L7A )
By global duality #K*' = #K?2, we obtain

#(GI L) = #Sre (A, [ Fo) [#EK ! = #8S1(A5, ) Fo) [#K2.

Thus, we have

(M) 2 2 1

#S1(Am/Fn) = Xgiob.,, (Am) " #H* Qs / Fy, Ap) [# K2 #L/# Pg-#S1e (A, | F).

Now, the local Euler characteristic formula tells us that #H(F,, ., Ay,) = #HO(F,, 0, Am)-

#H?(F,, », Am). Also for v not dividing p, #H"(F, ., Ay) = 7@£1‘I}(Fn,v,Am)7 we

deduce that

® 1 1 1 1 1

#L/#Pz = HvEZ(Fn)m’(p #(Hf (Fn,m Am)/H (FTL,'Ua Am)) X #(H[ (Qp,m Am)/H (Qp,na Am))
= llves(F,),otp #(HO(Fn vy Am)/Hl(Fn,va Am)) x #(Hll (Qp,n’ AM)/Hl (@Pma Am))
= HvGE(Fn),vfp #(Hz(Fn,v7 A )) !
)t

On the other hand, global duality and (H.nT
1, so

(9) HH*(Qx/Fp, Ay /#K? = #G? = # P2/ coker \* = #P2.
Furthermore, local Tate duality implies that
#HZ(Fn,mAm) = #HO(Fn vy A* )

Hence, the result follows on combining the equalities (7), (8 ) and (9) above. O

X #(H} (Qpns Am)/HY (Qpn, Am)).
ell us that # coker \2 = #H%(Qx/F,,, A%,) =

m

For the rest of this article, we assume in addition to (H.HT), (H.crys) and
(H.Frob) that (H.P) holds. Under these hypotheses, we give a generalization of
[Kim08, Lemma 3.3].
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Lemma4.2. Let I C {1,...,g} with#I =gy = g_. Then #S1(Am/Fy)/#S1e (AL, /Fy)
is bounded as n and m vary.

Proof. We shall first of all compute the quantity
Xglob.,F,, (Am)_l : [Hl (Qp,n7 Am) : Hjl (Qp,'m Am)]_l

using Lemma 4.1.

Since F, is totally real, one has Xglob.,7, (Am) = #(A;l)_[F”:Q], where A is
the subgroup of A,, on which complex conjugation acts by —1. As complex con-
jugation acts trivially on A'/(f¢), we get Xgiob.,r, (Am) = p v [FniQledeg(f) g
Furthermore, we know that #H"(Qp.n, Am) = p " (Qp.n:Qpledes(f) g

It remains to compute #H}(Qp.n, Ap). By definition,

() Fil- T
Hi(Qpns An) = (H(Qpoo TH @ A /() " [P™).
From hypothesis (H.F),
#Hll (Qp,oo’TT) = #H}(Qp(ﬂp“’)aTT)A-
If we write (-)V for the Pontryagin dual,
Hi (Qp(pp=), T = (Im Colz ;).
Proposition 2.1 gives an inclusion of Im Col% ; into a free A'-module of rank g,
(say N1 a) with finite index:
0— ImColrﬁI — Nra — Kra—0,
which gives the long exact sequence
0 (K7 o @A /(f))Tn — (N} o ® AY/(f))"
= ((Im Coli ) @ A/ (f)' — BT, K o © A/(f)).
Since H'(Qp,00/Qpn, KY o © A'/(f¢)) is finite it implies that
#((Im Col )V [p™] @ A /(F)™ - < C#(NY 5 @ A/(£9) " [p™]
< C - prredes(f) g p”

where C' < oo is independant of n and m. Hence the lemma follows. ([

Note that our result is actually weaker than [Kim08, Lemma 3.3], which in fact
gives an equality. However, our result is sufficient to prove the following general-
ization of Lemma 3.4 in op. cit.

Lemma 4.3. For all positive integers n and m, the natural map
S1(Am/Fn) = S1(A/Fn)[p™]
1s injective and its cokernel is finite and bounded as n and m vary.

Proof. Consider the diagram

1
0 —— S1(Aw/Fn) —— H'(Qx/Fy, An) — AL

[1
vES(Fy)
k k |ms

m m ! n,vsA
0 —— S1(A/F)[p™"] —— H'(Qs/Fo, A)p"] —— g([F )4;1 ((P}n f,A))'
veEX(F,) ¢
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We already know that the center vertical map is an isomorphism. Since H} (Qp , Ay) =
H}(Qpn, A)[p™], the map f,, is injective. The local condition is the unramified con-
dition for v ¢ p, thus one has

H'(Fryo, A)/H}(Foo, A)  C HY(EX,, A)

n,v’

Hl(Fn,vam)/H}(Fn’v,Am) CHI(Fur A )

n,vr “im
with F'") the maximal unramified extension of F,, ,,.

The short exact sequence 0 — A,, — A — A — 0 gives

Al fpm ATv = ker(HY (FY™, Ay) — HY (FY,, A))

and we have
# AL Jpm Al < AT (AT giy < o0

Since no prime splits completely in Q. /Q, we conclude that ker [] f, is bounded
as n and m vary. Applying the snake lemma, the lemma follows. ([l

Remark 4.4. The results above are stated for ' = Q and the isotypic component
of the trivial character of A. Letn be a character on A and denote by 7 its complex
conjugate and by T;]f the Zy,-module Tt with action of the Galois group twisted by
n, then

Hl(QP(MP‘X’)’TT)W = Hl(@p(ﬂp@),TJ)A = Hl(@p,omT;)

The results above (for the isotypic component of the trivial character) in fact hold
for every isotypic component because we may replace TT and TT* by TJ and T%’*
respectively in the proofs above.

Similarly, suppose that F/Q is a general abelian extension in which p is unram-
ified with [F : Q] coprime to p, we may prove the above results for an isotypic
component corresponding to a character of Gal(F/Q).

5. PROOF OF FUNCTIONAL EQUATIONS

We first review the following proposition of [Gre89], which is a crucial ingredient
of our proof for the functional equation.

Proposition 5.1. Let X and Y be two co-finitely generated A'-modules such that
i) for all irreducible distinguished polynomial f € A and positive integer e,

corankz (X ® Al/(fe))Fl = corankz, (Y ® Al/(fe))rl§

ii) for all positive integers n and m, #Xri [pm]/#Yrvll [p™] is bounded as n
vary.

Then, the Pontryagin duals of X and Y are pseudo-isomorphic.
We can now prove our main result.

Theorem 5.2. Let I C {1,...,g} of cardinality #1 = g+ = g_ and I¢ its
complement. Then Selr(T/F(up=))" and Sel]c(T*(l)T/F(ﬂpoo))v’L are pseudo-
isomorphic A-modules.
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Proof. 1t is enough to consider the isotypic component for the trivial character, as
explained in Remark 4.4. Since A'/(f¢) is a free Z,-modules on which Gg_ acts
trivially, we have

Si(TH/Qu0) ® AL/(f9) ker(H%@z/@wT*)@Al/(feH [T Qe T)GA ()
wWED

Higo(Qoo,w, TT)QA/(f°)

e H' (Qoo,w, TT@A (f©
= ker (HI(QZ/Qoo,TT @ A /(f) = HE HL E%M’U,,Tf(?@,\ff(}lo .
weyy Hioc(Qeo,
For the prime above p, we have by definition an injection
HI(QP,TJL) N Hl(@pm,TfTC)
HHQ, T)  HI(Qpeo, TH & AT/ (f)

For a prime w of Qo above a prime v # p in Q, since Qu ,/Q, is an unramified
Z,-extension, we have the injection

H'QuTL) - H'(Qw )
HYQu TL)  H}Qoow, TH ® AV/(f9)

Since H'(Q, TTE) ~ H'(Quo, T;{E)Fl7 applying the snake lemma on the diagram

H'(Qu,T}e)
O E— S](T;e/(@) — Hl(@E/Q7TTe) U].;[E Hlloc(Q”’Y{}Le)

| | -

1
eI 1 H'(Qoe,0.Te) r
0 —— (ST Q) & AN — '@/ Tf" — ( T it
A AL,

we get
S1(T}e/Q) = (S1(T1/Que) ® A/(£)"
and similarly one has
SHTY/F,) = Si(TT/Quo) .
Now by Lemmas 4.2 and 4.3, we see that S;(T7/Qs) and Sye (T*(l)T/QOO)L satisfy
Proposition 5.1 and the theorem follows. (I

6. APPLICATION TO ABELIAN VARIETIES

Let A be an abelian variety of dimension d defined over F' with good super-
singular reduction at all primes above p. Denote by T,(A) its Tate module at p.
As explained in the introduction, T),(A) satisfies hypotheses (H.HT), (H.crys) and
(H.Frob). One has T,(A)" ~ AV[p>°] where AV is the dual abelian variety. By the
main result of [Ima75] hypothesis (H.F) is satisfied. Also, since F' is unramified
over Q and p > 2, of [Maz72, Lemma 5.11] implies that AV(F) has no p-torsion,
and Fi/F being a Z,-extension, A" (F.,) has no p-torsion as well and (H.nT) is
indeed satisfied. Finally, the Hodge structure of A tells us that g = [F : Q] - 2d and
g+ = [F : Q] - d. Thus Theorem 5.2 applies in this setting. In particular, we have:

Theorem 6.1. Let I C {1,...,[F : Q] -2d} of cardinality #I = [F : Q] - d and
I its complement. Then Sel;(A/F (ppe))" and Selje(AY /F(up))V"" are pseudo-
isomorphic A-modules.
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Suppose now that A is an abelian variety with complex multiplication over the
CM field F' and write O for its ring of integers. We recall from [BL15a] that, as-
suming the “Perrin-Riou-Stark conjecture” (Conjecture 4.18 of op. cit.), the signed-
Coleman maps allow us to define signed p-adic L-functions £/ (A) € OpJI'K. They
satisfy a suitable interpolation property (Proposition 7.15 of op. cit.). One of the
main results of op. cit. (Theorem 7.16) relates the characteristic ideal of the Pon-
trygain dual of

Sel;(A/Fs) = Self(A/F(ppe))", where 7 is the trivial character of A,
to the signed p-adic L-functions. That is

I
(10) char (Sel;(A/F..)Y) = LA OpJI'K,
(y =)D
where the integer n(I) > 0 depends on the image of the signed-Coleman map and
is equal to 0 when the basis I is choosen to be strongly admissible in the sense of
[BL15b, Definition 3.2].
Theorem 6.1 above tells us that

char (Sel;(A/F4)Y) = char (Selc(AY /Fy)"Y) .
Thus, we deduce a functional equation for the (conjectural) signed p-adic L-functions

£1(4) L£I°(AY)
DR (w - 1>"<f“>> '

Here, a ~ 3 for o, 8 € OpJT'K means that « and 3 differ by a unit in OpJI'K.

In [Sprl6], Sprung proved a similar functional equation for supersingular elliptic
curves without the CM condition nor the main conjecture (that is, the equation
(10)). Tt would be interesting to study whether the same can be done for general
supersingular abelian varieties.
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