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Abstract: Suppose E1 and E2 are semistable elliptic curves over Q with good reduction at p,
whose associated weight two newforms f1 and f2 have congruent Fourier coefficients modulo p.
Let RS(E? , ρ) denote the algebraic p-adic L-value attached to each elliptic curve E?, twisted by
an irreducible Artin representation, ρ, factoring through the Kummer extension Q

(
µp∞ ,∆

1/p∞
)
.

If E1 and E2 have good ordinary reduction at p, we prove that

RS(E1, ρ) ≡ RS(E2, ρ) mod p,

under an integrality hypothesis for the modular symbols defined over the field cut out by Ker(ρ).
Under this hypothesis, we establish that E1 and E2 have the same analytic λ-invariant at ρ.

Alternatively, if E1 and E2 have good supersingular reduction at p, we show that∣∣RS(E1, ρ)−RS(E2, ρ)
∣∣
p
< pordp(cond(ρ))/2.

These congruences generalise some earlier work of Vatsal [Vat99], Shekhar-Sujatha [SS15] and
Choi-Kim [CK16], to the false Tate curve setting.
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1 Introduction

Let p be a prime. Suppose F =
∑
tm(F)qm and G =

∑
tm(G)qm are two modular cusp forms,

such that their Fourier coefficients satisfy tm(F) ≡ tm(G) (mod pr) at every integer m ≥ 1.
Vatsal showed in his seminal article [Vat99] that, under an appropriate choice of complex period,
the algebraic parts of the L-functions for F and G twisted by a Dirichlet character χ, will be
congruent modulo pr. Moreover, if p is a good ordinary prime for F and G, his result directly
implies that their p-adic L-functions must also be congruent mod pr.

Vatsal’s theorem has many applications. For example, using this congruence one may relate
the Iwasawa invariants of eigenforms inside a Hida deformation, thereby facilitating the study
of Iwasawa main conjectures over ordinary families (see [GV00] and [EPW06]). It is natural to
ask: Can Vatsal’s result be generalized to twists by more exotic representations?

In [SS14, SS15], Shekhar and Sujatha studied precisely this question for dihedral twists in
the weight two case, under the assumption that the cusp forms F and G are ordinary at p.
Using the same p-ordinarity assumption, Kriz and Li [KL16] established congruences between
Heegner points associated to congruent elliptic curves, which resulted in a mod p relation for
the anticyclotomic p-adic L-function constructed by Bertolini-Darmon-Prasanna in [BDP13].
This enabled them to obtain information on both the Birch-Swinnerton-Dyer Conjecture, and
the Goldfeld Conjecture.

For the supersingular case, Kim [Kim14] has proven that there exists a p-adic L-function
which interpolates the complex L-values of F and G, twisted by Hecke characters over an
imaginary quadratic field in which p splits. Whilst these elements are not p-integral, their
denominators are controlled in an explicit manner. In [CK16], Choi and Kim showed under
certain technical conditions similar to those in [Vat99], that these non-integral p-adic L-functions
satisfy congruence relations (in the sense that, when evaluated at the appropriate characters,
the p-adic norm of their difference is smaller than that of their original norms).

Goal. The principal aim of the present article is to establish a modulo p congruence relation
for the Hasse-Weil L-functions of congruent elliptic curves, twisted by an Artin representation
‘ρ’ factoring through a Kummer extension of Q.

We shall treat both the p-ordinary and the p-supersingular cases here.

Let E1 and E2 denote elliptic curves defined over Q, with conductors N1 and N2 respectively.
In particular both E1 and E2 are modular by the work of Wiles et al, which means there are
associated primitive forms f? ∈ Snew

2

(
Γ0(N?)

)
satisfying L(f? , s) = L(E? , s) for ? = 1, 2.

Henceforth we fix a prime number p 6= 2, and impose the following conditions:

(i) both curves E1 and E2 have good reduction at the prime p;

(ii) their conductors N1 and N2 are square-free integers;

(iii) the Fourier coefficients tm(E1) ≡ tm(E2) (mod p) whenever gcd(m,N1N2) = 1.

The condition (ii) is necessary as our expressions for the Rankin convolution are only valid
provided the two curves E1 and E2 are semistable over the ground field. Also (iii) is the same
condition as in [SS15], and weaker than insisting tm(E1) ≡ tm(E2) (mod p) for every m ≥ 1.

In order to obtain algebraic L-values, we first need to divide our L-functions by the correct
motivic periods, and then hope that the special values display some kind of integral structure.
For the semistable case these integrality issues were first raised in Bouganis’s thesis [Bou06],
while in the case of elliptic curves with complex multiplication, there is a detailed analysis of
period ratios in [DW10]. We shall adopt the same period choices made by Vatsal in [Vat99].
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If M = lcm(N1, N2), then both f1 and f2 are eigenforms on the congruence subgroup

Γ1(M) :=

{(
a b
c d

)
∈ SL2(Z) where a ≡ d ≡ 1 ( mod M) and c ≡ 0 ( mod M)

}
.

Let T be the Hecke algebra acting on the set of cusp forms of weight 2 on the subgroup Γ1(M).
The congruence class of f1 and f2 determines a maximal ideal m of T, and for ? ∈ {1, 2} each
eigenform f? will then induce a Qp-algebra homomorphism

π? : Tm ⊗Qp → Qp.

We write Rf? for the unique local factor of the Hecke algebra through which π? factors.

Hypothesis (Vat). The local factors satisfy Rf1 = Rf2 = Qp, and there exist T-isomorphisms

H1
(
Γ1(M),Zp

)±
m

= H1
P

(
Γ1(M),Zp

)±
m
∼= HomZp(T,Zp)m = S2

(
Γ1(M);Zp

)
m
,

where H1
P

(
Γ1(M),Zp

)
is the parabolic subgroup of H1

(
Γ1(M),Zp

)
, and ± denote the eigenspaces

for the complex conjugation.

For example, the equality Rf1 = Rf2 = Qp is certainly true if both elliptic curves E1 and E2

share the same conductor, since both f1 and f2 are then newforms of level M = N1 = N2.
The second freeness hypothesis is discussed at length in [Vat99, §2]. As explained in loc. cit.,
this hypothesis produces canonical periods, Ω±f? , which are well-defined up to p-adic units.
Furthermore in the case of elliptic curves, these periods in fact coincide with the standard
Néron periods.

For a positive integer n we set Kn = Q(µpn), and write Fn = Q(µpn)+ for its maximal totally
real subfield. Let p be the unique place of Fn lying above p, and S will denote a finite set of
places for Fn containing p. We label by α?(p) and β?(p) the two roots of the Hecke polynomial

Pp(E? , X) = X2 − tp(E?)X + p.

Throughout we normalise the p-adic valuation
∣∣ − ∣∣

p
on the Tate field Cp = Q̂p by

∣∣p∣∣
p

= p−1.

Let us also fix embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Cp. These embeddings will allow us to
consider the field of algebraic numbers, Q, simultaneously as both complex and p-adic numbers.

For the rest of the Introduction, we assume S is a finite set of places of the number field Fn
containing always those places dividing p ·∆ ·N1 ·N2.

Definition 1.1. For an Artin representation ρ : Gal(Q/Fn)→ GL(V ) and ? ∈ {1, 2}, we define

RS(E? , ρ) := ι−1
∞

 εFn(ρ∗)

α?(p)f(ρ,p)
×
Pp

(
ρ, α?(p)

−1
)

Pp

(
ρ∗, β?(p)−1

) × LS(E? , ρ
∗, 1)(

2πiΩ+
f?

)dim(ρ+)(
2πiΩ−f?

)dim(ρ−)


where ρ∗ means the contragredient representation to ρ, the notation εFn(ρ∗) indicates the local
epsilon factor for ρ∗ at p, the power f(ρ, p) represents the p-exponent of the conductor of ρ,
while Pp(ρ,X) and Pp(ρ

∗, X) denote the characteristic polynomials (associated with ρ and ρ∗,
respectively) at p.

We call RS(E? , ρ) the algebraic part of the L-value of E?, twisted by the representation ρ∗.

Let ∆ > 1 be a p-power free integer, and assume χ : Gal
(
Kn(∆1/pn)/Kn

)
� µpn is the

surjective character sending σ 7→ σ(∆1/pn )

∆1/pn . We now consider the irreducible representation

ρ = ψ ⊗ IndFnKn(χ)
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where ψ is a character on Gal(Fn+m/Fn) for some integer m ≥ 0. In Section 5 we shall
introduce a technical condition, Hypothesis (MS)p, which is unfortunately too long to give here.
Essentially, the Hypothesis (MS)p ensures that for all ψ-twists as above satisfy

ιp

(
RS

(
E? , ψ ⊗ IndFnKn(χ)

))
∈ OCp .

In the p-ordinary case, these values are interpolated by a power series Lp
(
E? , Ind(χ)

)
∈ Qp[[X]]

(see [Bou06, DW08]); thus (MS)p is equivalent to demanding that Lp
(
E? , Ind(χ)

)
∈ Zp[[X]].

In this situation, the χ-twisted Iwasawa Main Conjecture implies that Hypothesis (MS)p must
automatically be true as well, since Lp

(
E? , Ind(χ)

)
would then be a characteristic power series

for the χ-twisted Selmer group, which is always p-integral.

Theorem 1.2. If E1 and E2 have good ordinary reduction at p, and Hypothesis (MS)p holds:

(i) RS(E1, ρ) and RS(E2, ρ) are both p-integral;

(ii) RS(E1, ρ) ≡ RS(E2, ρ) mod p.

Moreover if Hypothesis (Vat) holds true as well, then (ii) gives a non-trivial congruence for
the representation ρ = ψ ⊗ IndFnKn(χ) at infinitely many ψ.

We should point out that Shekhar and Sujatha have proved an algebraic analogue of this result,
which concerns Euler characteristics of the fine Selmer groups in [SS14]. They also obtain in
[SS15] a similar result to our modulo p congruence, but for dihedral representations instead;
the two results coincide precisely when p = 3.

Note that in the supersingular case, the L-value RS(E?, ρ) is no longer p-integral due to the
presence of the term α?(p) in the denominator, the obstruction being that

∣∣α?(p)∣∣p = p−1/2.

Nevertheless, one can always consider the p-adic norm of RS(E1, ρ)−RS(E2, ρ) as a substitute,
which is the approach taken by Choi and Kim in [CK16].

Theorem 1.3. If E1 and E2 have supersingular reduction at p, and Hypothesis (MS)p holds:

(i)
∣∣RS(E1, ρ)

∣∣
p
≤ pf(ρ,p)/2 and

∣∣RS(E2, ρ)
∣∣
p
≤ pf(ρ,p)/2 ;

(ii) Moreover, if
∣∣α1(p)− α2(p)

∣∣
p
< p−1/2, then∣∣∣RS(E1, ρ)−RS(E2, ρ)

∣∣∣
p
< pf(ρ,p)/2 .

One observes that Weil’s bound tells us that tp(Ei) = 0 if p ≥ 5, and tp(Ei) ∈ {0,±3} if p = 3.
If tp(E1) = tp(E2) = 0, then we may always choose α1(p) = α2(p) = ±

√
−p. Alternatively, if

both tp(E1) and tp(E2) are non-zero then α?(p) = ±3±
√
−3

2 , in which case there always exists
a pair α1(p), α2(p) satisfying the condition (ii). However, if exactly one of tp(E1) and tp(E2)
vanishes (which can only happens when p = 3), then clearly such a pair cannot exist.

We note that the context of [CK16] is actually quite different from ours. In loc. cit. the
authors studied congruences between two modular forms of different weights, and χ is taken to
be a Hecke character over an imaginary quadratic field where p splits. Furthermore, in their
setting the values RS(E?, ρ) in fact deform continuously into a two-variable p-adic L-function.
In our specific situation, it is not really clear to us whether such an object could feasibly exist.
However it is still striking to us that a similar congruence relation holds, even without the
existence of such a p-adic L-function. While we have concentrated on congruent elliptic curves,
the majority of the calculations can be generalized to modular forms of arbitrary weight k ≥ 2
– see [War12] for some results in this direction.
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The strategy behind our proof of Theorems 1.2 and 1.3 is very similar to that in [SS15].
The first step is to show that for ? ∈ {1, 2}, there is a p-adic congruence between RS(E?, ρ)
and RS

(
E?, ψ ⊗ IndFnKn 1

)
. This is achieved by rewriting RS(E?,−) in terms of the Petersson

inner product of two Hilbert modular forms. By Atkin-Lehner theory, these algebraic L-values
decompose into a finite sum involving the coefficients in the q-expansion, which then allows us
to read off the aforementioned congruence from the respective Fourier expansions. (We note
that such calculations were partially carried out in [DW08], albeit only in the ordinary case.)

The second step is to compare RS
(
E1, ψ ⊗ IndFnKn 1

)
with RS

(
E2, ψ ⊗ IndFnKn 1

)
p-adically.

Because the representation IndQ
Kn

(1) splits completely into a direct sum of Dirichlet characters,

the Artin formalism implies that both RS
(
E1, ψ ⊗ IndFnKn 1

)
and RS

(
E2, ψ ⊗ IndFnKn 1

)
have a

product decomposition, over the same set of Dirichlet twists. The various fragments can then
be shown to be congruent modulo p individually, upon applying the main results in [Vat99].
Combining the congruences from Steps 1 and 2 together yields the two theorems above.

Acknowledgements: The authors thank Thomas Ward for undertaking the painstaking numerical
computations in Section 3.3. They are also extremely grateful to Jeffrey Hatley for his insights
into the period hypotheses we have made, and also for his general interest in the project.

2 Background on Hilbert modular forms

Our main references for this preliminary material on HMFs are the articles [Shi78] and [Pan91].
Let F be a totally real field of degree d = [F : Q], and write d = dF for its different ideal.
One may then interpret GL2(F ) as a group GQ of rational points for an associated Q-subgroup
inside GL2d(Q). Its adèlisation GA corresponds to the product

GL2(AF ) = GL2(R)d ×GL2(F̂ ) where F̂ := F ⊗
(

lim←−
m

Z/mZ
)
.

The proper subgroup GL+
2 (R)d comprising vectors v =

(
v1, . . . , vd

)
with vj =

(
αj βj
γj δj

)
and

αjδj > βjγj for all j ≤ d, acts naturally on d-copies of the upper half-plane H. If i = (i, . . . , i),
there is an isomorphism

{
v ∈ GL+

2 (R)d
∣∣ v · i = i

}/
Rd+ ∼= SO(2)d and this quotient is maximally

compact within GL2(R)d
/
Rd+.

Remarks: (a) For any element v ∈ GL+
2 (R)d and function f : Hd → C,(

f
∣∣
k
v
)

(z) := N
(
γjzj + δj

)−k × f (v · z) · N
(
det(v)

)k/2
at integers k > 0

where the norm of an d-tuple z = (z1, . . . , zd) is given by N (z) = z1 × · · · × zd.

(b) Let c be an ideal of OF ; one has localisations cq = c · OF,q and dq = d · OF,q. We define
open subgroups Wc ⊂ GA by the product Wc := GL+

2 (R)d ×
∏

qW (q), with each local factor
consisting of matrices

W (q) =

{(
a b
c d

)
∈ GL2(Fq)

∣∣∣∣ b ∈ d−1
q , c ∈ dqcq, a, d ∈ OF,q, ad− bc ∈ O×F,q

}
.

(c) If ĥF = #Clnw(OF ) denotes the narrow class number of F , one can always choose ideles
t1, . . . , tĥF ∈ A×F so that their associated OF -ideals t̃1, . . . , t̃ĥF form a complete set of represen-
tatives for Clnw(OF ). By the approximation theorem

GA =
⋃
λ

GQ · xλ ·Wc =
⋃
λ

GQ ·
(
x−1
λ

)ι ·Wc
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where the elements xλ =

(
1 0
0 tλ

)
, and the involution ι :

(
a b
c d

)
7→
(

d −b
−c a

)
.

Definition 2.1. (a) Fix a weight k > 0, an ideal c, and a Hecke character ψ mod c. Then
a Hilbert automorphic form f : GA → C of parallel weight (k, . . . , k), level c and character ψ
satisfies:

(i) f(sgx) = ψ(s) · f(x) for all x ∈ GA, s ∈ A×F and g ∈ GQ;

(ii) f(xw) = ψ(wι) · f(x) for every w ∈Wc with w∞ = 1;

(iii) f
(
xr(θ)

)
= f(x) · exp

(
ik{θ}

)
where r(θ) =

(
. . . ,

(
cos θj sin θj
− sin θj cos θj

)
, . . .

)
.

(b) An automorphic form f : GA → C is cuspidal provided that∫
AF /F

f

((
1 t
0 1

)
· g
)
· dt = 0 at each element g ∈ GA.

If f satisfies the condition that for any x ∈ GA with archimedean component x∞ = 1 there
exists hx : Hd → C such that f(xy) =

(
hx
∣∣
k
v
)
(i) for all vectors v ∈ GL+

2 (R)n with each hx
holomorphic at the cusps, then f : GA → C is a Hilbert modular form of holomorphic type.

From Remark (c) above, these HMFs correspond to ĥF -tuples (f1, ...fĥF ) of functions on

Hd. If c is an ideal of F , then we write Mk(c, ψ) for the space of Hilbert automorphic forms of
parallel weight k, level c, with finite order character ψ. Specifically, if f ∈Mk(c, ψ) then

fλ
∣∣
k
γ = ψ(γ) fλ

for all λ = 1, . . . , ĥF and γ ∈ Γλ(c), where Γλ(c) is the congruence modular group is given by{(
a b
c d

)
: b ∈ t̃−1

λ d−1
F , c ∈ t̃λc dF , a, d ∈ OF , ad− bc ∈ O×F

}
.

One then defines

eF (ξz) = exp

2πi
∑

1≤a≤d
ξτaza


for z = (z1, ..., zd) ∈ Hd, ξ ∈ F , and where τ1, ..., τd : F ↪→ R are distinct embeddings.

Properties: (i) Each individual component fλ has a Fourier expansion

fλ(z) =
∑
ξ

aλ(ξ) eF (ξz),

and the summation is taken over totally positive elements ξ ∈ t̃λ and ξ = 0.

(ii) For a subring R ⊂ C, we useMk(c, ψ;R) to denote the R-submodule of forms f inMk(c, ψ),
whose Fourier coefficients aλ(ξ) belong to R for every ξ � 0 in t̃λ, and for ξ = 0.

(iii) If f is itself a cusp form, then the constant terms aλ(0) = 0 for all λ; the vector subspace
of cusp forms of parallel weight k, level c and character ψ is written as Sk(c, ψ).

(iv) A cusp form f ∈ Sk(c, ψ) possesses Fourier coefficients C(m, f), given by

C(m, f) =

{
aλ(ξ)NF/Q(t̃λ)−k/2 if the ideal m = ξt̃−1

λ is integral

0 if m is not integral.
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We will employ some standard linear operators on the spaces Mk(c, ψ) and Sk(c, ψ).

Let q be an integral ideal of the ring OF , and q an idèle such that q̃ = q. One defines the
operators q and U(q) on f ∈Mk(c, ψ) by

(f |q)(x) = NF/Q(q)−k/2 f

(
x

(
q 0
0 1

))
and

(
f |U(q)

)
(x) = NF/Q(q)k/2−1

∑
v∈OF /q

f

(
x

(
1 v
0 q

))
.

These operators can be described by their effects on the Fourier coefficients, namely

C(m, f
∣∣q) = C(mq−1, f) and C

(
m, f |U(q)

)
= C(mq, f).

We also require the operator Jc (which is an involution at even weight k), and is defined by

(f |Jc)(x) = ψ(det(x)−1) f

(
x

(
0 1
c0 0

))
where c0 is an idèle such that c̃0 = cd2

F ; in particular, f |Jc ∈Mk(c, ψ
−1). This mapping has the

additional property
f |Jmc = NF/Q(m)k/2(f

∣∣Jc)∣∣m.
Furthermore, if f is a primitive form in Mk(c, ψ), we have

f |Jc = u(f) f ι

where u(f) ∈ µ∞ is a root of unity, and f ι is the form defined by C(m, f ι) = C(m, f).

Notations: (i) For F,G ∈ Mk(c, ψ) one of which is a cusp form, we introduce the (scaled)
Petersson inner product via the complex integral

〈F,G〉c :=

h∑
λ=1

∫
Γλ(c)\Hd

Fλ(z)Gλ(z)N(y)kdν(z)

with the choice of hyperbolic metric dν(z) =
∏

1≤j≤d y
−2
j dxjdyj .

(ii) Let K be a number field. For a finite character θ : Gal(K/K) −→ C×, write θ† : IK −→ C×
for the ideal character associated to θ via composition with the reciprocity map – specifically
θ† is normalised by

θ†(q) = θ(Frobq)

at all primes q of K, where Frobq is an arithmetic Frobenius element at q.

(iii) Given a Hilbert automorphic form f , we shall write c(f) to denote its minimal level.

The situation relevant to the present paper occurs when one considers a CM extension K/F .
In this setting, we have the following key result due to Serre [Ser87].

Theorem 2.2. Let K/F be a CM extension. If χ is a finite-order Hecke character over K and
ρ = ρχ := IndFK(χ), then there exists a Hilbert automorphic form gρ ∈ S1(c

(
gρ), (det ρ)†

)
over

the totally real F , such that

L(gρ, s) = L(ρ, s) = L(χ/K , s).

Furthermore, gρ is primitive if and only if χ is a primitive character.
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Finally if f and ρ are as in Theorem 2.2, we define the Rankin-Selberg L-function attached to
the tensor product f ⊗ gρ by

Ψ(f ,gρ, s) =

(
Γ(s)

(2π)s

)2[F :Q]

× Lc

(
(det ρ)†, 2s− 1

)
· L
(
f ,gρ, s

)
where the OF -ideal c is given by c(f)c(gρ), and

L(f ,gρ, s) =
∑
a

C(a, f)C(a,gρ)NF/Q(a)−s.

The analytic continuation and functional equation for the complex L-function Ψ(f ,gρ, s) were
established in the work of Klingen and Shimura.

3 The congruence between RS(E? , ρFn
) and RS(E? , σFn

)

Let n ≥ 1 be a fixed integer. Recall from the introduction that Kn denotes the number field
obtained by adjoining the pn-th roots of unity µpn to Q. For ? = 1, 2 we write f? for the base
change of f? to the totally real field Fn = K+

n = Kn ∩ R. Since Fn/Q is an abelian extension,
this is the Hilbert modular form whose L-function satisfies

L(s, f?) =
∏

ψ:G+
n→C×

L(s, f?, ψ), where G+
n = Gal(Fn/Q).

Let χ : Gal
(
Kn(∆1/pn)/Kn

)
� µpn be the surjective character determined by σ 7→ σ(∆1/pn )

∆1/pn .

One defines ρFn := IndFnKn
(
χ
)
. We shall also consider σFn = IndFnKn

(
1
)

= 1Fn ⊕ εKn/Fn , where
εKn/Fn is the quadratic character attached to the CM extension Kn/Fn.

Our goal is to establish a mod p congruence between the algebraic p-adic L-values attached
to the twists f? ⊗ ρFn ⊗ ψ and f? ⊗ σFn ⊗ ψ, for every finite character ψ : Gal(F∞/Fn)→ C×.

3.1 Inner products associated to Ψ(f ,gρ, 1)

Throughout this section, we fix a choice of ? ∈ {1, 2} and an integer n ≥ 1. Recalling that p is
the unique prime ideal of OFn lying above p, let α?(p) and β?(p) denote the two roots of

X2 − tp(E?) + p = X2 − C(p, f?)X +NFn/Q(p).

If E? has ordinary reduction at p, we adopt the convention that α?(p) is the p-adic unit root.
If E? has supersingular reduction at p, then the p-adic valuation of both roots is equal to 1/2;
one may assume that |α1(p) − α2(p)|p < p−1/2. For example, if tp(E?) = 0 for both ? = 1, 2
then we may either take α1(p) = α2(p) =

√
−p, or instead α1(p) = α2(p) = −

√
−p.

Analogously for a finite place v 6= p of Fn, we label by α?(v), β?(v) the roots of the polynomial

X2 − C(v, f?)X +NFn/Q(v) =
(
X − α?(v)

)(
X − β?(v)

)
.

One can extend α?(m), β?(m) multiplicatively to all ideals m of OFn .

Now consider a finite set of primes S of Fn, containing as a subset

S0 =
{
v : v is a prime of Fn, v

∣∣∆} ∪ {p}.
8



We denote by GFn,S the topological group Gal(F ab
n,S/Fn), where F ab

n,S is the maximal abelian
extension of Fn unramified outside the set S and the infinite places.

Let χ be the character on Gal
(
Kn(∆1/pn)/Kn

)
described above. We can view it both as a

character on GFn,S , and as an ideal character modulo fχ ·
∏

q∈S−S0
q. For the rest of this section,

ψ : GFn,S −→ C× will denote a fixed finite-order character of conductor fψ.

Definition 3.1. Set l0 :=
∏

q∈S−{p} q. For j = 1 or 2, the S-stabilisation of f? is defined to be

fα? :=
∑
a|pl0

M(a)β?(a).f?
∣∣a

where M is the Möbius function on ideals.

Suppose either ρ = ρFn⊗ψ or ρ = σFn,S⊗ψ, where σFn,S is the representation induced from the
trivial character 1Kn modulo l0 · OKn . By Theorem 2.2, there exists gρ ∈ M1

(
c(gρ), (det ρ)†

)
with the same complex L-function as ρ.

Following [Pan91, (3.14)], one may then define the depleted form

gρ,l0 :=
∑
n|l0

M(n).gρ
∣∣U(n) ◦ n

so in particular, gρ,l0 ∈M1

(
c(gρ)l

2
0, (det ρ)†

)
.

We shall choose ideals m′ and l′ of OFn such that m′ is a power of p, supp(l′) = supp(l0),
and c(gρ) · l20

∣∣m′l′ for both ρ = ρFn ⊗ψ and ρ = σFn,S ⊗ψ. Setting c0 := pl0c(f?), it follows that

fα? ∈ S2(c0) ⊂ S2
(
c(f?)m

′l′
)

and
gρ,l0 ∈ M1

(
c(gρ)l

2
0, (det ρ)†

)
⊂ M1

(
c(f?)m

′l′, (det ρ)†
)
.

Definition 3.2. We associate a complex linear functional, Lα?,Fn, through the assignment rule

Lα?,Fn : Θ 7−→
〈(

fα?
)ι
,Θ
∣∣Jc0〉c0

〈f?, f?〉c(f?)

.

Using the identity Φ
∣∣∣U(m′l′p−1l−1

0

)∣∣∣Jc0 = Φ
∣∣∣Jc(f?)m′l′

∣∣∣Tr
c(f?)m′l′

c0

∣∣∣Jc0 for every Φ ∈M2

(
c(f?)m

′l′
)
,

clearly Lα?,Fn is well-defined on the vector space M2

(
c(f?)m

′l′
)∣∣∣U(m′l′p−1l−1

0

)
.

The reason for introducing this functional is that the special value Ψ(f?,gρ, 1), which is basically

L(E? , ρ
∗, 1) multiplied by Euler factors, can be expressed in terms of Lα?,Fn

(
Φ

(n)
ρ

∣∣U(m′l′p−1l−1
0 )
)

where Φ
(n)
ρ is a product of gρ,l0 with a Klingen-Eisenstein series.

To be rather more explicit, let θ denote an ideal character modulo c for some OFn-ideal c.
We consider the series E1(0, c, θ) ∈M1

(
c, θ
)

whose λ-components are

E1(0, c, θ)λ(z) =
NF/Q(t̃λ)−1/2D

1/2
F

(−4πi)[F :Q]
×
∑
c,d

sign
(
NF/Q(c)

)
θ(cOF )NF/Q(cz + d)−1

where the summation ranges over pairs (c, d) ∈ OF×t̃−1
λ d−1

F
∼ . The Fourier expansion of each

λ-component is described in [Pan91, §4, Proposition 4.2], i.e.

E1(0, c, θ)λ(z) = NF/Q(t̃λ)−1/2 ×
∑

0�ξ∈t̃λ

∑
ξ̃=b̃c̃,
c∈OF ,
b∈t̃λ

θ(c̃)× eF (ξz).
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Definition 3.3. The parallel weight 2 modular form Φ
(n)
ρ is given by the product

Φ(n)
ρ := gρ,l0 ·E1

(
0, c(f?)m

′l′, (det ρ)−1
)

where we again ensure m′ and l′ are chosen so that c(gρ) · l20 divides m′l′.

Because we already assumed E? is semistable over Q, the Fourier coefficient

C
(
c(f?), f?

)
= (−1)#T ns

?,Fn

where T ns
?,Fn

denotes the finite places of Fn at which E? has non-split multiplicative reduction;

in particular C
(
c(f?), f?

)
6= 0, which is crucial to our method.

Notations: (a) If ρ is an Artin representation defined over Fn, we denote by f(ρ, p) the exponent
at p occurring in its conductor fρ.

(b) If v is a finite place of Fn not dividing l, we write Pv(ρ,X) for the characteristic polynomial

det
(

1−X · Frob−1
v

∣∣∣(Vl(ρ)
)IFn,v)

where Vl(ρ) is the l-adic representation space for ρ, the element Frob−1
v denotes a geometric

Frobenius for v, and IFn,v is the inertia subgroup of Gal
(
Q/Fn

)
at the place v.

(c) Lastly we define a Hecke character χ̃ over Kn by χ̃ =

{
χ⊗ ResKn(ψ) if ρ = ρFn ⊗ ψ
1Kn,l0 ⊗ ResKn(ψ) if ρ = σFn,S ⊗ ψ.

Theorem 3.4. If one puts Aχ̃ = NKn/Q(fχ̃), then

ihFn (−4i)φ(pn)/2

α?(m′l′)C
(
c(f?), f?

) · Lα?,Fn (Φ(n)
ρ

∣∣∣U(m′l′p−1
l−1
0

))
=

εFn(ρ∗)

α?(p)f(ρ,p)
∏
q|∆ α?(q)

ordq(Aχ̃)

×
∏
v|p∆

Pv
(
ρ, α?(qv)

−[Fn,v :Fqv ]
)

Pv
(
ρ∗, β?(qv)−[Fn,v :Fqv ]

) × LS(E? , ρ
∗, 1)

(2π)φ(pn) · 〈f?, f?〉c(f?)

where ρ∗ denotes the contragredient representation to ρ.

Proof. The details are almost identical to the demonstration of [DW08, Theorem 3.2].

Note that the right-hand side of the above identity does not depend on the OFn-ideals m′ or l′,
therefore neither does the left-hand side.

3.2 A specialisation to the cyclotomic line

Henceforth we restrict ourselves to considering only Hecke characters ψ factoring through Γcy
n ,

the Galois group of the cyclotomic Zp-extension of Fn (this simplies most of our formulae).

Lemma 3.5. If ψ denotes a Hecke character on Γcy
n of conductor pm, then:

(a) for m > 0, both polynomials Pp(ρ,X) and Pp(ρ
∗, X) equal one;

(b) for m ≥ 0 and all places v
∣∣∆, both Pv(ρ,X) and Pv(ρ

∗, X) equal one;

(c) for all rational primes q dividing ∆, we have ordq(Aχ̃) = pn − pn−1.

10



Proof. At each finite place v of Fn, the Hecke polynomial of gρ at v admits a factorisation

X2 − C(v,gρ)X + (det ρ)†(v) =
(
X − λ(v)

)(
X − µ(v)

)
,

and likewise the dual Hecke polynomial factorises into

X2 − C(v,gρ)X + (det ρ)†
−1

(v) =
(
X − λ̂(v)

)(
X − µ̂(v)

)
.

Let us further define τ = ρFn or τ = σFn,S , depending on whether ρ = ρFn⊗ψ or ρ = σFn,S⊗ψ.
By its very definition

Pp(τ ⊗ ψ±1, X) =
(
1− (ψ±1)†(p)λ(p)X

)
×
(
1− (ψ±1)†(p)µ(p)X

)
;

however ψ is non-trivial if m > 0, therefore (ψ±1)†(p) = 0 which proves (a).

Secondly if ψ is the trivial character and v
∣∣∆, then Pv(τ,X) = 1 because each prime vn

of OKn above v ramifies in the extension Kn

(
∆1/pn

)
/Kn, which means vn divides the moduli

of both Hecke characters χ and 1Kn,l0 . On the other hand, if ψ is a non-trivial character of

p-power conductor then
(
Vl(τ)⊗ ψ±1

)IFn,v ∼= Vl(τ)IFn,v ⊗ ψ±1, whence

Pv
(
τ ⊗ ψ±1, X

)
= Pv

(
τ, ψ(v)±1X

)
= 1.

Finally part (c) was already proven in [DW08, Lemma 3.1].

Corollary 3.6. If either ρ = ρFn ⊗ ψ or ρ = σFn,S ⊗ ψ with ψ factoring through Γcy
n , then

RS
(
E? , ρ

)
= K?,Fn ×

1

α?(m′l′)
· Lα?,Fn

(
Φ(n)
ρ

∣∣∣U(m′l′p−1
l−1
0

))

where the constant K?,Fn :=
ihFn (−4i)φ(pn)/2

∏
q|∆ α?(q)p

n−pn−1

C
(
c(f?),f?

) × ι−1
∞

( 〈
f?,f?
〉
c(f?)(

−Ω+
f?

Ω−f?

)[Fn:Q]

)
∈ Q.

Proof. Merging together Theorem 3.4 and Lemma 3.5, and observing that the ratio of Vatsal’s

period to its automorphic cousin is exactly
(
−Ω+

f?
Ω−f?
)[Fn:Q]

to
〈
f?, f?

〉
c(f?)

, the result follows.

Applying Atkin-Lehner theory, we know the linear functional Lα?,Fn decomposes into a finite
linear combination of the Fourier coefficients. Therefore there exist finitely many ideals ni and
fixed algebraic numbers `α?,Fn(ni), such that

Lα?,Fn (Θ) =
∑
i

C(ni,Θ)× `α?,Fn(ni) (1)

for all elements Θ ∈M2(c0).

Let us put θKn,ρ = χ or θKn,ρ = 1Kn,l0 , according to whether ρ = ρFn ⊗ψ or ρ = σFn,S ⊗ψ.

The λ-component of each Fourier coefficient C
(
ξ,Φ

(n)
ρ

)
is then equal to the finite summation∑

ξ=ξ1+ξ2

∑
aCOK,

aā=ξ1 t̃
−1
λ

θ†Kn,ρ(a) · ψ†(ξ1t̃
−1
λ )

∑
ξ̃2=b̃c̃,
c∈OFn,
b∈t̃λ

(
det
(
IndFnKn(θKn,ρ)

)†)−1
(c̃) · ψ†(c̃)−2.

It follows immediately that for all nCOFn ,

C
(
n,Φ

(n)
ρFn⊗ψ

)
≡ C

(
n,Φ

(n)
σFn,S⊗ψ

)
mod MCp (2)
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as the individual values of θKn,ρ = χ and θKn,ρ = 1Kn,l0 differ by at most an element of the
maximal ideal of Cp; in other words, one has

∣∣χ(a) − 1Kn,l0(a)
∣∣
p
< 1 for all ideals a of OKn .

Combining Equations (1) and (2) with Corollary 3.6 above, we deduce that∣∣∣RS(E? , ρFn ⊗ ψ)−RS(E? , σFn,S ⊗ ψ)∣∣∣
p
< pordp

(
α?(m′)

)
×max

{
T (m′l′)
?,Fn

(
ρFn
)
, T (m′l′)
?,Fn

(
σFn,S

)}
where for either % = ρFn or % = σFn,S , the respective p-integrality bound is given by

T (m′l′)
?,Fn

(%) :=
∣∣∣K?,Fn

∣∣∣
p
× sup

{∣∣∣Lα?,Fn (Φ
(n)
%⊗ψ

∣∣∣U(m′l′p−1
l−1
0

)) ∣∣∣
p

for each ψ : Γcy
n → C×

}
. (3)

Finally, let us now make the minimal choices of exponent

m′ = pf(ρFn⊗ψ,p) and l′ = c(gρFn⊗ψ) · p−f(ρFn⊗ψ,p) · l20.

Setting T?,Fn := max
{
T (m′l′)
?,Fn

(
ρFn
)
, T (m′l′)
?,Fn

(
σFn,S

)}
, we have shown the following

Theorem 3.7. For each character ψ on Γcy
n and ? ∈ {1, 2}, if the constant T?,Fn ≤ 1 then∣∣∣RS(E? , ρFn ⊗ ψ)−RS(E? , σFn,S ⊗ ψ)∣∣∣

p
< pordp(α?(p))×f(ρFn⊗ψ,p).

In Section 5.1 we will discuss how, under a certain Hypothesis (MS)p, it follows that T?,Fn ≤ 1.
In particular, if E? has good ordinary reduction at p then α?(p) ∈ Z×p ; hence∣∣RS(E? , ρFn ⊗ ψ)−RS(E? , σFn,S ⊗ ψ)∣∣p < 1. (4)

If E? has good supersingular reduction at p, then pordp(α?(p))×f(ρFn⊗ψ,p) = pf
(

IndQ
Fn

(ρFn⊗ψ), p
)/

2

since
∣∣α?(p)

∣∣
p

= p−1/2, and the exponent grows rapidly with the conductor of the character ψ.

Moreover under Hypothesis (Vat) stated in §4.1, we show in Theorem 4.5(ii,iii) that for ψ = 1,∣∣∣RS(E? , σFn,S)∣∣∣
p
≤ pf(σFn ,p)/2+1 .

In fact, pf(σFn ,p) =
∣∣DiscQ(µpn )

∣∣ = pnp
n−(n+1)pn−1

hence in the supersingular case, one deduces:

(3.2.1) if
∣∣RS(E? , ρFn)∣∣p =

∣∣RS(E? , σFn,S)∣∣p then∣∣RS(E? , ρFn)−RS(E? , σFn,S)∣∣p < p(npn−(n+1)pn−1+2)/2 ;

(3.2.2) if
∣∣RS(E? , ρFn)∣∣p < ∣∣RS(E? , σFn,S)∣∣p then∣∣RS(E? , ρFn)−RS(E? , σFn,S)∣∣p ≤ p(npn−(n+1)pn−1+2)/2 ;

(3.2.3) if
∣∣RS(E? , ρFn)∣∣p > ∣∣RS(E? , σFn,S)∣∣p then∣∣RS(E? , ρFn)−RS(E? , σFn,S)∣∣p < pf(ρFn ,p)/2 .

Note that the power of p on the right-side of (3.2.3) is given by pf(ρFn ,p)/2 =
∣∣DiscQ(∆1/pn )

∣∣−1/2

p
.
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3.3 Computing L-values in the supersingular case

Let E be an elliptic curve over Q. Recall p was an odd prime, and ∆ > 1 a p-power free integer.
For any self-dual Artin representation % which factors through Q(µp,

p
√

∆)/Q, we will consider

LE(%) :=
εp(%)

α
f(%,p)
p

×
Pp(%, α

−1
p )

Pp(%, β
′−1
p )

·
L(p∆)(E, %, 1)(

Ω+(E)Ω−(E)
)dim(%)/2

.

Here εp(%) is the local epsilon factor of % at p. We again define αp, βp to be the roots of the
local polynomial Pp(E,X) = X2 − tp(E)X + p ; when E has good ordinary reduction at p, we
always choose αp to be the root which is a p-adic unit.

Throughout this section, we will focus our attention on the two self-dual Artin representa-
tions

σ1 = IndQ
Q(µp)(1) and ρ1 = IndQ

Q(µp)(χ)

where χ is a non-trivial character of Gal
(
Q(µp,

p
√

∆)/Q(µp)
)
. In the paper [DD07], at ordinary

primes p 6= 2 the Dokchitsers compiled extensive numerical evidence supporting the congruence

LE(σ1) ≡ LE(ρ1) mod p. (5)

These experiments were motivated by recent developments in non-commutative Iwasawa theory,
since LE(ρ1) is the special value of a p-adic L-function associated to the motive h1(E) ⊗ ρ1.
We will establish that this congruence (5) is true in the final section (and a lot more besides),
under an assumption on the p-integrality of certain modular symbols – see Theorem 5.6.

Now suppose that E has good supersingular reduction at p. Then Theorem 3.7
implies a congruence holds modulo p−f(ρ1,p)/2 ·MCp , as the Néron periods coincide with Vatsal’s.
Given the special values may not be p-adically integral, one instead predicts that∣∣∣LE(σ1)− LE(ρ1)

∣∣∣
p
≤ p

f(ρ1, p)−1
2 , with

∣∣LE(σ1)
∣∣
p
,
∣∣LE(ρ1)

∣∣
p
≤ pf(ρ1, p)/2.

These inequalities mirror what occurs in the p-ordinary situation, and can be further refined.

Lemma 3.8. (i) f(σ1, p) = p− 2;

(ii) If ∆ > 1 is a (p− 1)st-power free integer, then f(ρ1, p) =

{
p if ∆p−1 6≡ 1 (mod p2)

p− 2 if ∆p−1 ≡ 1 (mod p2).

Proof. Part (i) follows from the equality pf(σ1,p) =
∣∣DiscQ(µp)

∣∣, together with the fact that

DiscQ(µp) = (−1)(p−1)/2 × pp−2 (e.g. see [Was97, Prop 2.7]). To show part (ii), one simply

observes that cond(ρ1) =
∣∣DiscQ(∆1/p)

∣∣; then by the main result of [Wes10],

DiscQ(∆1/p) =

{
(−1)(p−1)/2 × pp ×∆p−1 if ∆p−1 6≡ 1 ( mod p2)

(−1)(p−1)/2 × pp−2 ×∆p−1 if ∆p−1 ≡ 1 ( mod p2).

Bearing in mind the upper bounds (3.2.1)-(3.2.3) at n = 1, we therefore conjecture∣∣∣LE(σ1)− LE(ρ1)
∣∣∣
p
≤ p(p−1)/2 and

∣∣LE(σ1)
∣∣
p
,
∣∣LE(ρ1)

∣∣
p
≤ pp/2. (6)

In fact, if LE(ρ1) = 0 then we make a stronger prediction than (3.2.2), namely that∣∣LE(σ1)− LE(ρ1)
∣∣
p

=
∣∣LE(σ1) − 0

∣∣
p
≤ p(p−3)/2. (7)
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We asked Thomas Ward to check whether the inequalities (6) and (7) hold numerically, and
the following results are entirely due to his efforts. The calculation is largely the same as in the
ordinary case (which was already carried out in [DW08, §6.1]), and he was able to adapt the
methods from [DD07]. In the supersingular case he only considered primes where tp(E) = 0,
so αp =

√
−p and βp = −

√
−p are the two roots of the polynomial X2 + p – they are both non

p-adic units, and no longer lie in Qp.

In MAGMA one creates the field Qp(π) where π is a fixed root of X2 + p; this field is a
totally ramified quadratic extension of Qp, with uniformising element π. One then computes
L-values by setting αp = π. He deliberately chose cases in which p,NE ,∆ are pairwise coprime,
and such that L(E, σ1, 1) 6= 0.

Notation: To calculate the algebraic part of the Artin-twisted L-values, let us write

L∗(E, σ1) :=
√∣∣DiscQ(µp)

∣∣ · L(E, σ1, 1)(
2Ω+(E)Ω−(E)

)(p−1)/2

and

L∗(E, ρ1) :=
√∣∣DiscQ(∆1/p)

∣∣ · L(E, ρ1, 1)(
2Ω+(E)Ω−(E)

)(p−1)/2

which are rational numbers; one can then compute LE(σ1) and LE(ρ1) as elements of Qp(π).

When both LE(σ1) and LE(ρ1) are p-integral, the numerical evidence supports that they are
congruent modulo π. Likewise if they are non-p-integral, we found that (6) and (7) are satisfied,
for each elliptic curve E and supersingular prime p considered here.

Unfortunately there are serious computational difficulties involved in calculating L(E, ρ1, 1).
The conductor of this Artin-twist is given by N(E, ρ1) = Np−1

E · N2
ρ1

(since NE and Nρ1 were
chosen to be coprime) which grows very quickly with the prime p, and this dramatically slows
down the computation. For this reason the tables are restricted mostly to the case p = 3,
although there is one example exhibited for p = 5.

Table 1 lists the value of L∗(E, σ1) for each case of E and p (which does not depend on ∆).

Table 1: Values of L∗(E, σ1)
p E L∗(E, σ1)

3 17A(1) 2−2

3 32A(1) 2−2

3 56A(1) 2−2

3 62A(1) 2−2

3 80A(1) 2−1

3 161A(1) 2−1

3 182A(1) 5

3 200C(1) 2

5 14A(1) 2−1

Tables 2, 3, 4, 5 6, 7, 8 and 9 give the results for p = 3. Table 10 gives the example for p = 5.
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Table 2: p = 3, E = 17A(1) : y2 + xy + y = x3 − x2 − x− 14
∆ L∗(E, ρ1) LE(σ1) LE(ρ1)

2 22 2.π−3 + 2.π−2 +O(π3) 2.π−3 + 2.π−1 +O(π3)

5 22 2.π−3 + 2.π−2 +O(π1) 2.π−3 +O(π1)

7 22 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π1)

10 22 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 1.π−2 + 1.π−1 +O(π0)

11 0 1.π + 1.π2 + 2.π3 +O(π4) 0

13 26 1.π−3 + 1.π−2 + 1.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π1)

14 22 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 +O(π1)

19 0 1.π + 1.π2 +O(π7) 0

22 2234 2.π + 2.π2 +O(π3) 1.π5 +O(π7)

23 24 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 1.π−1 +O(π1)

26 22 2.π−3 + 2.π−2 + 2.π−1 +O(π0) 2.π−3 + 2.π−2 +O(π1)

29 0 1.π3 + 1.π4 +O(π7) 0

31 22 1.π−3 + 1.π−2 + 2.π−1 +O(π0) π−3 + 1.π−1 +O(π3)

35 22 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−2 +O(π3)

37 22 1.π−3 + 1.π−2 + 1.π−1 +O(π0) π−3 + 1.π−2 + 1.π−1 +O(π0)

38 22.32 2.π + 2.π2 +O(π7) 2.π + 2.π3 +O(π5)

41 24.32 2.π3 + 2.π4 +O(π5) 2.π + 1.π3 +O(π5)
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Table 3: p = 3, E = 32A(1) : y2 = x3 + 4x
∆ L∗(E, ρ1) LE(σ1) LE(ρ1)

5 24 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 1.π−1 + 2.π3 +O(π4)

7 22 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 2.π−1 + 2.π3 +O(π4)

11 0 1.π1 + 1.π2 + 2.π3 +O(π8) 0

13 24 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 1.π1 +O(π4)

17 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 2.π1 +O(π4)

19 22 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 1.π−2 + 1.π−1 +O(π4)

23 0 1.π1 + 1.π2 + 2.π3 +O(π8) 0

29 22 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π−1 + 1.π3 +O(π4)

31 24 1.π−3 + 1.π−2 + 1.π1 +O(π4) 1.π−3 + 2.π1 + 2.π3 +O(π4)

35 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 1.π3 +O(π4)

37 22 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 1.π−2 + 1.π−1 +O(π4)

41 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 1.π1 + 1.π3 +O(π4)

43 24 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 1.π−1 + 1.π3 +O(π4)

47 0 1.π1 + 1.π2 + 2.π5 +O(π8) 0

Table 4: p = 3, E = 56A(1) : y2 = x3 + x+ 2
∆ L∗(E, ρ1) LE(σ1) LE(ρ1)

5 22 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π1 + 2.π3 +O(π4)

11 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−1 + 2.π1 +O(π4)

13 0 1.π1 + 1.π2 + 1.π5 +O(π8) 0

17 0 2.π1 + 2.π2 + 2.π3 +O(π8) 0

19 0 1.π1 + 1.π2 + 1.π3 +O(π8) 0

23 0 1.π1 + 1.π2 + 2.π3 +O(π8) 0

29 22.32 1.π3 + 1.π4 + 2.π7 +O(π10) 2.π1 + 2.π3 + 1.π7 +O(π8)

31 22.32 1.π1 + 1.π2 + 2.π3 +O(π8) 1.π1 + 1.π3 + 1.π7 +O(π8)

37 22 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 1.π−2 + 1.π−1 +O(π4)

41 24 2.π−3 + 2.π−2 + 2.π1 +O(π4) 2.π−3 + 1.π−1 + 2.π1 +O(π4)

43 0 1.π1 + 1.π2 + 2.π7 +O(π8) 0

47 24 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π1 +O(π4)
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Table 5: p = 3, E = 62A(1) : y2 + xy + y = x3 − x2 − x+ 1
∆ L∗(E, ρ1) LE(σ1) LE(ρ1)

5 22 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π1 + 2.π3 +O(π4)

7 24 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 1.π−1 + 1.π1 +O(π4)

11 22.32 1.π1 + 1.π2 + 2.π3 +O(π8) 2.π1 + 2.π3 + 2.π5 +O(π8)

13 0 1.π1 + 1.π2 + 1.π5 +O(π8) 0

17 0 2.π1 + 2.π2 + 2.π3 +O(π8) 0

19 22 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 1.π−2 + 1.π−1 +O(π4)

23 24 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 1.π−1 + 1.π1 +O(π4)

29 22 2.π−3 + 2.π−2 + 1.π−1 +O(π4) 2.π−3 + 2.π−1 + 1.π3 +O(π4)

35 22 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 1.π3 +O(π4)

37 24 1.π−3 + 1.π−2 + 1.π1 +O(π4) 1.π−3 + 1.π−2 + 2.π3 +O(π4)

41 0 2.π3 + 2.π4 + 2.π5 +O(π10) 0

43 22.32 1.π5 + 1.π6 + 2.π7 +O(π12) 1.π1 + 2.π3 + 2.π5 +O(π8)

47 22 2.π−3 + 2.π−2 + 1.π1 +O(π4) 2.π−3 + 2.π−1 + 1.π1 +O(π4)

Table 6: p = 3, E = 80A(1) : y2 = x3 − 7x+ 6
∆ L∗(E, ρ1) LE(σ1) LE(ρ1)

7 23 2.π−3 + 2.π−2 + 1.π−1 +O(π4) 2.π−3 + 1.π−1 + 2.π1 +O(π4)

11 23 1.π−3 + 1.π−2 + 1.π3 +O(π4) 1.π−3 + 2.π3 +O(π4)

13 23 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−1 + 1.π1 +O(π4)

17 23 1.π−3 + 1.π−2 + 2.π3 +O(π4) 1.π−3 + 1.π−2 + 2.π−1 +O(π4)

19 0 2.π1 + 2.π2 + 1.π7 +O(π8) 0

23 23 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 + 2.π−1 + 1.π1 +O(π4)

29 29 1.π−3 + 1.π−2 + 1.π−1 +O(π4) 1.π−3 +O(π4)

31 0 2.π1 + 2.π2 + 1.π3 +O(π8) 0

37 23 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 2.π−1 +O(π4)

41 23.34 1.π3 + 1.π4 + 1.π9 +O(π10) 1.π5 + 2.π7 + 1.π11 +O(π12)

43 23.32 2.π5 + 2.π6 + 1.π7 +O(π12) 2.π1 + 1.π3 + 2.π7 +O(π8)
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Table 7: p = 3, E = 161A(1) : y2 + xy + y = x3 − x2 − 9x+ 8
∆ L∗(E, ρ1) LE(σ1) LE(ρ1)

2 2 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 1.π−1 +O(π2)

5 23 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π1)

10 2 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−2 + 1.π−1 +O(π0)

11 23 1.π−3 + 1.π−2 +O(π0) 1.π−3 + 1.π−2 +O(π0)

13 23 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−1 +O(π1)

17 2 1.π−3 + 1.π−2 +O(π3) 1.π−3 + 1.π−2 +O(π1)

19 2 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−2 + 1.π−1 +O(π0)

22 25 2.π−3 + 2.π−2 +O(π3) 2.π−3 +O(π3)

26 2 1.π−3 + 1.π−2 + 1.π−1 +O(π0) 1.π−3 + 1.π−2 +O(π1)

29 25 1.π−3 + 1.π−2 + 1.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π4)

31 2.32 2.π5 + 2.π6 +O(π11) 2.π + 2.π3 +O(π7)

34 25 2.π−3 + 2.π−2 +O(π3) 2.π−3 + 2.π−1 +O(π1)

37 2 2.π−3 + 2.π−2 + 2.π−1 +O(π0) 2.π−3 + 2.π−2 + 1.π−1 +O(π0)

38 27 1.π−3 + 1.π−2 + 1.π−1 +O(π0) 1.π−3 + 1.π−1 +O(π1)

Table 8: p = 3, E = 182A(1) : y2 + xy + y = x3 − x2 + 866x+ 6445
∆ L∗(E, ρ1) LE(σ1) LE(ρ1)

5 24.5 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 2.π−1 +O(π3)

11 22.5.72 1.π−3 + 1.π−2 +O(π1) 1.π−3 +O(π3)

17 22.325 1.π−3 + 1.π−2 +O(π3) 1.π−3 + 1.π−2 +O(π1)

19 24.5 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−2 + 2.π−1 +O(π0)

23 22.53 1.π−3 + 1.π−2 +O(π1) 1.π−3 + 1.π−1 +O(π1)

29 22.5 1.π−3 + 1.π−2 + 2.π−1 +O(π0) 1.π−3 + 1.π−1 +O(π1)

31 28.5 2.π−3 + 2.π−2 +O(π3) 2.π−3 + 1.π−1 +O(π1)

37 24.5 2.π−3 + 2.π−2 + 2.π−1 +O(π0) 2.π−3 + 2.π−2 + 2.π−1 +O(π0)

41 26.32.5 1.π3 + 1.π4 +O(π6) 1.π + 1.π3 +O(π5)

43 26.5 2.π−3 + 2.π−2 + 1.π−1 +O(π0) 2.π−3 + 2.π−1 +O(π1)
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Table 9: p = 3, E = 200C(1) : y2 = x3 − 50x+ 125
∆ L∗(E, ρ1) LE(σ1) LE(ρ1)

7 23 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 1.π−1 + 2.π1 +O(π4)

11 23 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 2.π3 +O(π4)

13 0 2.π1 + 2.π2 + 1.π3 +O(π8) 0

17 23 1.π−3 + 1.π−2 + 2.π−1 +O(π4) 1.π−3 + 1.π−2 + 2.π−1 +O(π4)

19 23 2.π−3 + 2.π−2 + 2.π−1 +O(π4) 2.π−3 + 2.π−2 + 2.π−1 +O(π4)

23 23 1.π−3 + 1.π−2 + 1.π1 +O(π4) 1.π−3 + 2.π−1 + 1.π1 +O(π4)

29 25 1.π−3 + 1.π−2 + 1.π1 +O(π4) 1.π−3 + 2 .π−1 +O(π4)

31 27 2.π−3 + 2.π−2 + 1.π−1 +O(π4) 2.π−3 + 1.π−1 + 2.π1 +O(π4)

37 25 2.π−3 + 2.π−2 + 1.π−1 +O(π4) 2.π−3 + 2.π−2 + 1.π3 +O(π4)

Table 10: p = 5, E = 14A(1) : y2 + xy + y = x3 + 4x− 6
∆ L∗(E, ρ1) LE(σ1) LE(ρ1)

3 23.32 2.π−5 + 1.π−4 + 1.π−3 +O(π−2) 2.π−5 + 4.π−3 +O(π−1)
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4 The congruence between RS(E1, σFn
) and RS(E2, σFn

)

The main obstacle that prevents us relating RS(E1, ρFn) and RS(E2, ρFn) p-adically is that
the representation ρn = IndQ

Fn

(
ρFn
)

is irreducible, so the ρn-twisted L-functions do not split.
However, because RS(E? , ρFn) and RS(E? , σFn) are already connected via a mod p congruence
and as the induced representation σn = IndQ

Fn

(
σFn
)

splits completely into a sum of characters,
the corresponding p-adic L-values RS(E? , σFn) decompose into a φ(pn)-fold product “

∏
η . . . ”.

One can therefore obtain the desired mod p congruence indirectly, by instead showing that
each η-component of RS(E1, σFn) and RS(E2, σFn) in the product decomposition is congruent.
We begin by recalling the method of Vatsal [Vat99], which works for classical cusp forms over
Q. We next use his theorem repeatedly, to obtain a mod p congruence for each of the η-twists.

4.1 A review of Vatsal’s results

Fix an integer M = Nps ≥ 4, with N coprime to p. Let F =
∑
tm(F)qm and G =

∑
tm(G)qm

be normalized Hecke eigenforms of weight k ≥ 2 on the congruence subgroup Γ1(M) ⊂ SL2(Z).
We choose a finite extension K/Qp, whose ring of integers OK contains

{
tm(F)

}
m
∪
{
tm(G)

}
m

.
If π is a uniformizer of OK , we suppose that

tm(F) ≡ tm(G) ( mod πr) for every m ≥ 1,

and for a fixed r ≥ 1; thus it makes sense to write F ≡ G (mod πr).

Let hk = hk
(
Γ1(M),OK

)
denote the OK-algebra generated by the Hecke operators Tn,

acting on the cusp forms Sk
(
Γ1(M),OK

)
. The congruence class of F and G determines a

maximal ideal m of hk
(
Γ1(M),OK

)
, and a residual representation

ρm : Gal(Q/Q) → GL2

(
hk
(
Γ1(M),OK

)/
m
)

such that Tr
(
ρm(Frobl)

)
= Tl at all primes l - Np.

Remark: Assume now that ρm is irreducible. The localised ring hk,m⊗Q is Artinian, and there
exist surjective K-algebra mappings πF , πG : hk,m ⊗ Q � K corresponding to both F and G.
As hk,m ⊗ Q decomposes into a direct product of local factors, we shall denote by RF and RG
the respective components through which πF and πG factor.

We write Symn(OK) for the homogeneous polynomials of degree n, with coefficients in OK .
The Hecke algebra hk

(
Γ1(M),OK

)
acts naturally on H1

(
Γ1(M), Symk−2(OK)

)
, and also on

the parabolic cohomology H1
P

(
Γ1(M), Symk−2(OK)

)
; we can decompose both these cohomology

groups into ±-eigenspaces under the action of complex conjugation.

Henceforth we shall assume the following conditions from [Vat99] hold for F and G.

Hypothesis (Vat). (i) The residual representation ρm is irreducible;

(ii) the local factors satisfy RF = RG = K;

(iii) there are isomorphisms of hk
(
Γ1(M),OK

)
-modules,

H1
(
Γ1(M),Symk−2(OK)

)±
m

= H1
P

(
Γ1(M),Symk−2(OK)

)±
m
∼= h∗2,m = HomOK

(
h2,m,OK

)
m

;

(iv) in particular, H1
(
Γ1(M),Symk−2(OK)

)
is torsion-free.

As explained in §1.3 of op. cit. there exist canonical periods Ω±F and Ω±G , obtained from cutting
out the F- and G- isotypic pieces from the parabolic cohomology of the modular curve X1(M).
At weight k = 2 and trivial nebentypus, they agree (up to a unit) with the usual Néron periods
Ω±(EF ) and Ω±(EG), associated to the modular elliptic curves EF , EG ⊂ Jac

(
X1(M)

)
.

The following result is Proposition 1.7 and §1.9 in op. cit.
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Proposition 4.1. If η is a Dirichlet character, then for all integers m such that 0 ≤ m ≤ k−2:

τ(η−1) ·
(
k − 2

m

)
·m! · L(h, η,m+ 1)

(−2πi)m+1Ω
sign(η)
h

∈ OK

where h = F or G, and τ(η−1) denotes the Gauss sum associated to η−1. Furthermore,

τ(η−1) ·
(
k − 2

m

)
·m! · L(F , η,m+ 1)

(−2πi)m+1Ω
sign(η)
F

≡ τ(η−1) ·
(
k − 2

m

)
·m! · L(G, η,m+ 1)

(−2πi)m+1Ω
sign(η)
G

mod πr.

Corollary 4.2. If F and G are ordinary at p, then(
1− αF (p)−1

)2 · L(F , 1)

−2πiΩ+
F
≡
(
1− αG(p)−1

)2 · L(G, 1)

−2πiΩ+
G

mod πr

where αF (p) and αG(p) denote the p-adic unit roots for the respective Hecke polynomials at p.

Proof. Let Lp(F) and Lp(G) be the p-adic L-functions over the Zp-cyclotomic extension of Q,
associated to F and G respectively. Using [Vat99, Theorem 1.10], then Proposition 4.1 implies

Lp(F) ≡ Lp(G) mod πrOK [[X]].

The result follows upon evaluating both Lp(F) and Lp(G) at the trivial character η = 1.

The situation is quite different in the non-ordinary case, because the p-adic L-functions are
not defined over OK [[X]], and the quantity

(
1− αh(p)

−1
)2 · L(h,1)

−2πiΩ+
h

may now not lie inside OK .

Nevertheless, if w is the p-adic valuation of αh(p) where h is either F or G, then∣∣∣∣∣(1− αh(p)
−1
)2 · L(h, 1)

−2πiΩ+
h

∣∣∣∣∣
p

≤ p2w

since Proposition 4.1 tells us that L(h,1)

−2πiΩ+
h

∈ OK .

Lemma 4.3. If there exist roots αF (p) and αG(p) of the Hecke polynomials for F and G at p,
such that ∣∣αF (p)

∣∣
p

=
∣∣αG(p)

∣∣
p

= p−w and
∣∣∣αF (p)−1 − αG(p)−1

∣∣∣
p
≤ p−c

for some real numbers w, c > 0, then∣∣∣∣∣(1− αF (p)−1
)2 · L(F , 1)

−2πiΩ+
F
−
(
1− αG(p)−1

)2 · L(G, 1)

−2πiΩ+
G

∣∣∣∣∣
p

≤ max
{
p2w−r·ordp(π), pw−c

}
.

Proof. Let us write αF (p)−1 = αG(p)−1 + pcx where x ∈ OCp . Expanding the squared factor:(
1− αF (p)−1

)2 · L(F , 1)

−2πiΩ+
F

=
(
p2cx2 − 2pcx

(
1− αG(p)−1

)
+
(
1− αG(p)−1

)2) · L(F , 1)

−2πiΩ+
F
.

As a direct consequence,∣∣∣∣∣(1− αF (p)−1
)2 · L(F , 1)

−2πiΩ+
F
−
(
1− αG(p)−1

)2 · L(G, 1)

−2πiΩ+
G

∣∣∣∣∣
p

≤ max

{∣∣∣∣p2cx2 · L(F , 1)

−2πiΩ+
F

∣∣∣∣
p

,

∣∣∣∣− 2pcx
(
1− αG(p)−1

)
· L(F , 1)

−2πiΩ+
F

∣∣∣∣
p

,

∣∣∣∣(1− αG(p)−1
)2 ·( L(F , 1)

−2πiΩ+
F
− L(G, 1)

−2πiΩ+
G

)∣∣∣∣
p

}
which is bounded above by max

{
p−2c, pw−c, p2w−ordp(πr)

}
upon applying Proposition 4.1.
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4.2 Behaviour under twisting by σFn

Let E1 and E2 be the two elliptic curves as before. In this section, we shall exclusively consider

ρ = σFn ⊗ ψ =
(

IndFnKn(1)
)
⊗ ψ = ψ ⊕ ψ · εKn/Fn

where ψ is a character on Γcy
n . Remember our goal is to study RS(E?, ρ), which is defined to be

εFn(ρ∗)

α?(p)f(ρ,p)
×
Pp

(
ρ, α?(p)−[Fn,p:Fp]

)
Pp

(
ρ∗, β?(p)−[Fn,p:Fp]

) × LS(E?, ρ
∗, 1)(

(2πi)2Ω+
f?

Ω−f?

)[Fn:Q]
.

If ψ is a non-trivial character, then Pp(ρ,X) = 1. On the other hand, if ψ is the trivial character
then both Pp(ρ,X) and Pp(ρ

∗, X) are given by the polynomial (1−X)
(
1−εKn/Fn(p)X

)
= (1−X).

Since p is totally ramified in Fn we have Fn,p = Fp, in which case

Pp(ρ, α?(p)
−[Fn,p:Fp])

Pp(ρ∗, β?(p)−[Fn,p:Fp])
=

1− α?(p)−1

1− β?(p)−1
.

Corollary 4.4. If S′ = S \ {p}, then

RS(E? , ρ) =


(
1− α?(p)−1

)2 × εFn (ρ∗)

α?(p)f(ρ,p) ×
LS′ (E?,ρ

∗,1)

((2πi)2Ω+
f?

Ω−f?)
[Fn:Q] if ψ = 1

εFn (ρ∗)

α?(p)f(ρ,p) ×
LS′ (E?,ρ

∗,1)

((2πi)2Ω+
f?

Ω−f?)
[Fn:Q] if ψ 6= 1.

Recall that f1 and f2 are the weight two forms corresponding to the elliptic curves E1 and E2.
We now assume the Fourier coefficients satisfy tm(E1) ≡ tm(E2) (mod pr) if gcd(m,N1N2) = 1.
If one puts M =

∏
l
∣∣N1N2

l1+max{ordl(N1),ordl(N2)}, then the depleted modular forms

F =
∑

gcd(m,N1N2)=1

tm(E1) · qm and G =
∑

gcd(m,N1N2)=1

tm(E2) · qm

are both Hecke eigenforms of weight two on Γ0(M), with their Euler factors at N1 ·N2 removed.
By their construction F ≡ G (mod pr), so one can certainly apply Vatsal’s congruences to them.
We shall also require the sets S1 and S2, defined by

S? =
{
v : v is a place of Fn satisfying v

∣∣N?

}
.

Remarks: (a) Let σn = IndQ
Fn

(ρ∗); we have a natural decomposition

σn =
⊕

η:Gn→C×
η ⊗ ψ0

where Gn = Gal(Kn/Q), and ψ0 denotes any character on Gal(Q/Q) such that ψ0

∣∣
GFn,S

= ψ−1.

(b) It follows immediately that

LS1∪S2(E1, ρ
∗, s) =

∏
η

L(F , ψ0 ⊗ η, s) and LS1∪S2(E2, ρ
∗, s) =

∏
η

L(G, ψ0 ⊗ η, s)

where the product ranges over characters η : Gn → C×.
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(c) By [SS15, Lemma 4.3], the periods Ω±f1
and Ω±F differ by a p-adic unit, and likewise Ω±f2

and

Ω±G differ by the same unit; without loss of generality, they may be interchanged as we please.

(d) Lastly by the Artin formalism, the Gauss sum εFn(ρ) equals
∏
η:Gn→C× τ

(
(η ⊗ ψ0)−1

)
.

Combining together (a)-(d) with Corollary 4.4, we deduce that

RS1∪S2∪{p}(E1, ρ) =
1

α1(p)f(ρ,p)
×R(F , ψ0)×

∏
η 6=1

τ
(
(η ⊗ ψ0)−1

)
· L(F , η ⊗ ψ0, 1)(

−2πiΩ
sign(ηψ0)
F

)
and

RS1∪S2∪{p}(E2, ρ) =
1

α2(p)f(ρ,p)
×R(G, ψ0)×

∏
η 6=1

τ
(
(η ⊗ ψ0)−1

)
· L(G, η ⊗ ψ0, 1)(

−2πiΩ
sign(ηψ0)
G

) ,

where R(h, ψ0) :=


(
1− αh(p)

−1
)2 · L(h,1)

(−2πiΩ+
h )

if ψ = 1

τ(ψ−1
0 )·L(h,ψ0,1)(
−2πiΩ

sign(ψ0)
h

) if ψ 6= 1.

Applying Proposition 4.1, for each η : Gn → C× the quantities

τ
(
(η ⊗ ψ0)−1

)
· L(F , η ⊗ ψ0, 1)

−2πiΩ
sign(ηψ0)
F

and τ
(
(η ⊗ ψ0)−1

)
· L(G, η ⊗ ψ0, 1)

−2πiΩ
sign(ηψ0)
G

are p-integral; moreover for ψ non-trivial or η 6= 1,

τ
(
(η ⊗ ψ0

)−1
) · L(F , η ⊗ ψ0, 1)

−2πiΩ
sign(ηψ0)
F

≡ τ
(
(η ⊗ ψ0)−1

)
· L(G, η ⊗ ψ0, 1)

−2πiΩ
sign(ηψ0)
G

( mod pr). (8)

Note that if ψ = η = 1, by Lemma 4.3 the most we can say is∣∣∣R(F ,1) − R(G,1)
∣∣∣
p
≤ max

{
p2w−r, pw−c

}
(9)

where
∣∣α1(p)

∣∣
p

=
∣∣α2(p)

∣∣
p

= p−w and
∣∣α1(p)−1 − α2(p)−1

∣∣
p
≤ p−c. Equations (8) and (9) imply∣∣∣α1(p)f(ρ,p) ·RS1∪S2∪{p}(E1, ρ) − α2(p)f(ρ,p) ·RS1∪S2∪{p}(E2, ρ)

∣∣∣
p

≤

{
max

{
p2w−r, pw−c

}
if ψ = 1

p−r if ψ 6= 1.
(10)

Case I – p - tp(E?): Since tp(E1) ≡ tp(E2) (mod pr) and we can write tp(E?) = α?(p) + p
α?(p)

for ? ∈ {1, 2}, it follows that

pr divides tp(E1)− tp(E2) =
(
α1(p)− α2(p)

)
×
(

1− p

α1(p) · α2(p)

)
.

As the right-hand bracket is a p-adic unit, thus
∣∣∣α1(p)−α2(p)

∣∣∣
p

=
∣∣∣α1(p)−1 −α2(p)−1

∣∣∣
p
≤ p−r.

One therefore has w = 0, c = r and α1(p)f(ρ,p) ≡ α2(p)f(ρ,p) (mod pr), in which case (10)
becomes ∣∣∣RS1∪S2∪{p}(E1, ρ) − RS1∪S2∪{p}(E2, ρ)

∣∣∣
p
≤ p−r.
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Case II – p | tp(E?) and ψ 6= 1: If tp(E1) = tp(E2) = 0, we can choose α1(p) = α2(p) = ±
√
−p

in which case w = 1/2, c =∞ and α1(p)f(ρ,p) = α2(p)f(ρ,p), so that (10) becomes∣∣∣RS1∪S2∪{p}(E1, ρ) − RS1∪S2∪{p}(E2, ρ)
∣∣∣
p
≤ pf(ρ,p)·ordp(α?(p)) × p−r = pf(ρ,p)/2−r.

If p = 3 and t3(E?) 6= 0, the upper bound must be weakened to pf(ρ,p)/2.

Case III – p | tp(E?) and ψ = 1: If tp(E1) = tp(E2) = 0, then the same choices as in the
previous case imply the inequality (10) reduces to∣∣∣RS1∪S2∪{p}(E1, ρ) − RS1∪S2∪{p}(E2, ρ)

∣∣∣
p
≤ pf(ρ,p)/2 × pmax{2w−r,w−∞} = pf(ρ,p)/2+1−r.

Unfortunately if p = 3 and t3(E?) 6= 0, then the best we can do is∣∣∣RS1∪S2∪{p}(E1, ρ) − RS1∪S2∪{p}(E2, ρ)
∣∣∣
p
< pf(ρ,p)/2+1

and in this situation,
∣∣RS1∪S2∪{p}(E? , ρ)

∣∣
p
≤ pf(ρ,p)/2+1 for each ? ∈ {1, 2}.

Throughout we have been working with the set S1 ∪ S2 ∪ {p}. However if l is a rational prime
not lying below this set, by assumption tl(E1) ≡ tl(E2) (mod pr), so the local L-factors satisfy

Lv(E1, ρ, 1) ≡ Lv(E2, ρ, 1) ( mod pr) at all places v
∣∣l.

It follows that we may replace S1 ∪S2 ∪{p} above with a larger set S containing it as a subset,
yet still ensure that our congruences involving RS(E? , ρ) hold true.

Recall that the GFn-representation σFn ⊗ψ =
(

IndFnKn(1)
)
⊗ψ = ψ⊕ψ · εKn/Fn is reducible,

and we have been assuming tm(E1) ≡ tm(E2) ( mod pr) for all integers m coprime to N1N2.
To summarise our arguments so far, we have established the following

Theorem 4.5. Assume Hypothesis (Vat) holds for both f1 and f2, and that S1 ∪ S2 ∪ {p} ⊂ S.

(i) If E1 and E2 have good ordinary reduction at p, then

RS(E1, σFn ⊗ ψ) ≡ RS(E1, σFn ⊗ ψ) ( mod pr)

and both sides of the congruence are p-integral.

(ii) If E1 and E2 have good supersingular reduction at p with tp(E1) = tp(E2) = 0, then∣∣∣RS(E1, σFn ⊗ ψ) − RS(E2, σFn ⊗ ψ)
∣∣∣
p
≤

{
pf(ρ,p)/2+1−r if ψ = 1

pf(ρ,p)/2−r if ψ 6= 1

where α1(p) = α2(p) = ±
√
−p, and

∣∣∣RS(E? , σFn ⊗ ψ)
∣∣∣
p
≤

{
pf(ρ,p)/2+1 if ψ = 1

pf(ρ,p)/2 if ψ 6= 1.

(iii) If E1 and E2 have good supersingular reduction at p with either tp(E1) 6= 0 or tp(E2) 6= 0,∣∣∣RS(E1, σFn ⊗ ψ) − RS(E2, σFn ⊗ ψ)
∣∣∣
p
< pf(ρ,p)/2+1

provided that
∣∣α1(p)− α2(p)

∣∣
p
< p−1/2; here

∣∣RS(E? , σFn ⊗ ψ)
∣∣
p
≤ pf(ρ,p)/2+1 for ? ∈ {1, 2}.

Note that (i) and (ii) essentially yield congruences mod pr, whereas (iii) is a mod p congruence.
It is unlikely that the latter can be improved much, unless the two roots α1(p) and α2(p) are
sufficiently close to each other in OCp .

Indeed the congruence in (ii) suggests that any (hypothetical!) pair of p-adic L-functions
attached to E1 and E2 over Kn should satisfy a congruence mod pr whenever f1 and f2 do,
even though such p-bounded measures do not at present exist.
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5 Combining together three separate congruences

To complete the proof of Theorems 1.2 and 1.3, it is enough to establish mod p congruences
linking the following three pairs:

(i) RS(E1, ρFn) and RS(E1, σFn);

(ii) RS(E1, σFn) and RS(E2, σFn);

(iii) RS(E2, σFn) and RS(E2, ρFn).

We first need to check under what conditions both RS(E1, ρFn) and RS(E2, ρFn) are p-integral in
the case of ordinary reduction, and have controlled growth in the supersingular case. Given the
period issues for the σFn-twists are resolved through Vatsal’s choices of period in the previous
section, morally the same periods should work nicely for the ρFn-twists.

5.1 Modular symbols over CM fields

Let E be a semistable elliptic curve over Q. We begin by rewriting the Hasse-Weil L-values for
E in terms of modular symbols over the CM-extension Kn = Q(µpn) of Fn (see [Har87, Bou06]).
Consider the algebraic group G = ResKn/QGL(2) given by restricting scalars from Kn to Q.

Let πE,n denote the cuspidal automorphic representation of GL2(AKn), corresponding to
the base-change of the associated newform fE ∈ S2

(
Γ0(NE)

)
up to Kn. Then there exists an

adelic L2-function F = F/Kn : G(A) → VC, which is the projection of the canonical primitive

form associated to πE,n =
⊗

ν π
(ν)
E,n; here the complex vector space VC is 3[Kn:Q]-dimensional.

If F0 = F
∣∣
∞ corresponds to the archimedean part

⊗
ν|∞ π

(ν)
E,n, by choosing sub-coordinates

(x, y) appropriately, we can view this as an L2-function F0 : A×Kn ×
(
Kn ⊗ Ẑ

)
→ C.

Definition 5.1. For each r ∈ A×Kn and ϑ ∈ Kn ⊗
(

lim←−n Z/nZ
)
, one associates the symbol

MSE(r, ϑ) =
1[

O×Kn : En
] × ∫

x∈Xn,E
F0

(
rdKnx,−ϑ

)
· d×x

where Xn,E := K×n,∞ +×
∏
ν OKn,ν

/
En, and En = En(r, ϑ) is any subgroup of totally positive units

u of finite index inside the ring OFn, such that (1− u)ϑ ∈ r ·
∏
ν OKn,ν .

The above integrals are certainly well-defined, and independent of the choice of subgroup En.
Also the Haar measure d×x = ⊗νd×xν has itself been normalised so that

∫
OKn,ν

d×xν = 1 at

the finite places, whilst d×xν = d sgn(xν)∧ d|x|ν
2πi·xν at every archimedean place.

Proposition 5.2. (Birch’s Lemma) If χ̃ is a Hecke character over Kn of conductor cχ̃, then

L(πE , χ̃, 1) = (2π)[Kn:Q]τKn(χ̃) ·NKn/Q(cχ̃)−1 ×
#Cl(OKn )∑

j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)MSE(rjcχ̃, ϑ)

where the rj’s run over a set of representatives for Cl(OKn).

Proof. This is demonstrated in [Har87, Section 4] over an arbitrary CM field.

In particular, if ψ : Γcy
n → C× has finite order and if χ̃ =

{
χ⊗ ResKn(ψ) if % = ρFn
1Kn,l0 ⊗ ResKn(ψ) if % = σFn,S ,

then L(πE , χ̃, s) = LS0(E, % ⊗ ψ−1, s). Now one can identify
NKn/Q(cχ̃)

τKn (χ̃) with sgn(χ̃) · τKn
(
χ̃−1

)
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and then by inductivity, the Gauss sum τKn
(
χ̃−1

)
coincides with the epsilon factor εFn

(
%⊗ψ−1

)
.

Dividing through by the period, Birch’s Lemma can therefore be rewritten as

#Cl(OKn )∑
j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)·
(2π)[Kn:Q]MSE(rjcχ̃, ϑ)

(−4π2Ω+
fE

Ω−fE )[Fn:Q]
= sgn(χ̃)·εFn

(
%⊗ψ−1

)
× LS0(E, %⊗ ψ−1, 1)

(−4π2Ω+
fE

Ω−fE )[Fn:Q]
.

(11)

Remarks: (i) A result of Haran [Har87, p37] states that the submodule L0 of C generated by
[O×Kn : En] · MSE(r, ϑ) with |ϑ|v < |rj |v, is of finite-type over Z; if

{
(r1, ϑ1), . . . , (rt, ϑt)

}
yields

a full set of generators for L0, one can then define the p-power number

IEn,p(Kn) := sup

{∣∣∣[O×Kn : En(ri, ϑi)
]∣∣∣−1

p
with i = 1, . . . , t

}
.

(ii) In Bouganis’ thesis [Bou06, p84] it is shown that if ξF generates the free Z(p)-module

Im
(
H

[Kn:Q]
cusp

(
Y0(NE),Z(p)

)
→ H

[Kn:Q]
cusp

(
Y0(NE),Q

))[
F
]
, there exists an automorphic period

Ωaut
E,p(F) such that ξF = Ωaut

E,p(F) · dωF, where dωF is the differential corresponding to F.

(iii) For a fixed commutative ring R, the inverse of τMD
R,p = τMD

R,p (Kn) ∈ R(p) refers to the
denominator occurring in the section

1− Eis : Hd
cusp

(
Y0(NE), R(p)

)
−→ Hd

c

(
Y0(NE), R(p)

)
with d = [Kn : Q];

here ‘Eis’ above denotes the Hecke idempotent which cuts out the Eisenstein portion of the
Manin-Drinfeld splitting in degree 2d.

(iv) Lastly, it is then explained in [Bou06, §4.4] that there is a natural containment

ιp
(
Ωaut
E,p(F)−1 · L0

)
⊗Z Zp ⊂ τMD

Z,p · OCp .

Definition 5.3. For every r ∈ A×Kn and ϑ ∈ Kn ⊗
(

lim←−n Z/nZ
)

as before, let us introduce the

modified symbol

MSvat
E (r, ϑ) :=

(2π)[Kn:Q]

(−4π2Ω+
fE

Ω−fE )[Fn:Q]
×MSE(r, ϑ).

The advantage of making this modification is that MSvat
E (−,−) will take algebraic values,

rather than purely transcendental ones as per MSE(−,−).

Corollary 5.4. At each ψ of p-power conductor with χ̃ =

{
χ⊗ ResKn(ψ) if % = ρFn
1Kn,l0 ⊗ ResKn(ψ) if % = σFn,S,

#Cl(OKn )∑
j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)×MSvat
E (rjcχ̃, ϑ) ∈ ι−1

∞

 τMD
Z,p (Kn)

IEn,p(Kn)
×

Ωaut
E,p(F)(

Ω+
fE

Ω−fE

)[Fn:Q]

 · OCp .

Proof. One simply combines together Remarks (i)-(iv) above.

We now return to the main situation in the paper, so again E1 and E2 are two semistable elliptic
curves whose Fourier coefficients satisfy tm(E1) ≡ tm(E2) (mod p) if gcd(m,N1N2) = 1.

26



Hypothesis (MS)p. For both choices ? ∈ {1, 2}, the Zp-lattice generated by the values

#Cl(OKn )∑
j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)×MSvat
E? (rjcχ̃, ϑ)

where χ̃ ranges over all Hecke characters as above, is properly contained inside OCp.

We remark that this hypothesis ensures that the algebraic L-values we study are p-integral.
Should these values turn out to be non-integral (which is clearly not suggested by the numerical
data compiled in [DD07] and in §3.3), then it is possible to modify our arguments to show that
analogous congruence relations hold, after rescaling the p-adic L-values appropriately – see §5.5
below for a further discussion.

Corollary 5.4 supplies us with, of course, a larger lattice that these values are contained in.
Moreover if one assumes that Hypothesis (Vat) is true, using Proposition 4.1 one can show

#Cl(OKn )∑
j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)×MSvat
E? (rjcχ̃, ϑ) ∈ OCp

for all characters χ̃ of the form 1Kn,l0 ⊗ResKn(ψ) – we leave this as an exercise for the reader.
Henceforth we assume our finite set S of places is chosen large enough, so that

S0 ∪ S1 ∪ S2 ⊂ S.

Recall in our calculations with the functional Lα?,Fn(−), we made a minimal choice of exponents

m′ = pf(ρFn⊗ψ,p) and l′ = c(gρFn⊗ψ) · p−f(ρFn⊗ψ,p) · l20 ,

and set T?,Fn := max
{
T (m′l′)
?,Fn

(
ρFn
)
, T (m′l′)
?,Fn

(
σFn,S

)}
where T (m′l′)

?,Fn
(%) is defined in Equation (3).

The following result was used to obtain both Equation (4) and (3.2.1)-(3.2.3) in Section 3.2.

Proposition 5.5. If Hypothesis (MS)p holds true, then T?,Fn ≤ 1 for both ? ∈ {1, 2}.

Proof. If ρ = ρFn ⊗ ψ or ρ = σFn,S ⊗ ψ with ψ factoring through Γcy
n , then

K?,Fn × Lα?,Fn
(

Φ(n)
ρ

∣∣∣U(m′l′p−1
l−1
0

)) by 3.6
= α?(m

′l′)×RS
(
E? , ρ

)
by 1.1

=
α?(m

′l′)

α?(p)f(ρ,p)
·

 Pp

(
ρ, α?(p)

−1
)

Pp

(
ρ∗, β?(p)−1

) · ∏
v∈S\S0

Lv(E? , ρ
∗, 1)

× εFn(ρ∗) LS0(E? , %
∗, 1)

(−4π2Ω+
fE

Ω−fE )[Fn:Q]
.

Clearly ordp

(
α?(m′l′)
α?(p)f(ρ,p)

)
≥ 0 by our choice of m′, while the bracketted term is also p-integral.

Finally, using the variant of Birch’s Lemma in Equation (11), the right-most term becomes

εFn(ρ∗) LS0(E? , %
∗, 1)

(−4π2Ω+
fE

Ω−fE )[Fn:Q]
= sgn(χ̃) ·

#Cl(OKn )∑
j=1

∑
ϑ∈(OKn/cχ̃)×

χ̃(ϑrj)×MSvat
E? (rjcχ̃, ϑ)

which is p-integral under Hypothesis (MS)p. It follows immediately that∣∣∣∣K?,Fn × Lα?,Fn
(

Φ(n)
ρ

∣∣∣U(m′l′p−1
l−1
0

)) ∣∣∣∣
p

≤
∣∣∣∣ α?(m′l′)α?(p)f(ρ,p)

∣∣∣∣
p

≤ 1

for both ρ = ρFn ⊗ ψ or ρ = σFn,S ⊗ ψ; in other words T?,Fn ≤ 1, as required.
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5.2 An improvement in the p-ordinary case

The following mod p congruence relies on the crucial observation that in the ordinary case, there
exist p-bounded measures interpolating the special values of h1(E?) ⊗ ρFn and h1(E?) ⊗ σFn
over the character-space for the cyclotomic Zp-extension of Kn.

Unfortunately in the case of supersingular reduction, no one has yet constructed bounded
p-adic L-functions interpolating these L-values, so we cannot make any improvements here.
David Loeffler and Mahesh Kakde pointed out that whilst the p-adic distributions in [Har87]

are 1/2-admissible on
(
OFn⊗Zp

)×
, once one projects to the cyclotomic component Gal(F∞/Fn)

the corresponding measure is only
(
[Fn : Q]/2

)
-admissible on Γcy

n , hence not uniquely defined.

Theorem 5.6. (i) If E? has good ordinary reduction at p and Hypothesis (MS)p holds, then

RS
(
E? , ρFn ⊗ ψ

)
≡ RS

(
E? , σFn ⊗ ψ

)
mod p

at all finite characters ψ : Gal(K∞/Fn)→ Q×p , and both sides of the congruence are p-integral.

(ii) Furthermore, if Hypothesis (Vat) holds too then at infinitely many such characters ψ above,
this mod p congruence is non-trivial.

Proof. There exist p-adic L-functions Lp
(
E? , ρFn

)
and Lp

(
E? , σFn

)
in Zp[[Gal(K∞/Kn)]]⊗ZpQp

satisfying at all such ψ above,

ψ
(
Lp
(
E? , ρFn

))
= ιp

(
RS
(
E? , ρFn ⊗ ψ

))
and ψ

(
Lp
(
E? , σFn

))
= ιp

(
RS
(
E? , σFn ⊗ ψ

))
.

This was proven in [Bou06, DW08], albeit with a different choice of periods from Vatsal’s ones,
and for the (possibly) smaller choice of set S0 ⊂ S.

Each value RS
(
E? , σFn ⊗ψ

)
is then p-integral because we are assuming Hypothesis (MS)p,

and these can vanish for only finitely many ψ since Lp
(
E? , σFn

)
6= 0. The latter statement

follows from a well known result of Rohrlich [Roh88], implying the non-vanishing of L(E? , ψ, 1)
at all but finitely many Dirichlet twists ψ factoring through the extension K∞/Q.

By Equation (4), for all such characters ψ we deduce that RS
(
E? , ρFn⊗ψ

)
is also p-integral.

In fact under Hypothesis (Vat), the values RS
(
E? , σFn ⊗ψ

)
are not divisible by p for infinitely

many characters ψ, so the same must hold true for the collection of L-values RS
(
E? , ρFn ⊗ψ

)
.

It follows that Lp
(
E? , ρFn

)
is non-zero, and moreover

Lp
(
E? , ρFn

)
−Lp

(
E? , σFn

)
∈ Zp[[Gal(K∞/Kn)]]∩MCp [[Gal(K∞/Kn)]] = p·Zp[[Gal(K∞/Kn)]].

As a direct consequence, ψ
(
Lp
(
E? , ρFn

))
− ψ

(
Lp
(
E? , σFn

))
∈ p · OCp at all characters ψ.

5.3 Proof of Theorems 1.2 and 1.3

The preparatory work is over, and we can now prove the two main results in the Introduction.
Recall that the elliptic curves E1 and E2 have good reduction at the prime p, their Fourier
coefficients satisfy tm(E1) ≡ tm(E2) (mod p) if gcd(m,N1N2) = 1, and also S0 ∪ S1 ∪ S2 ⊂ S.
Throughout we suppose that Hypotheses (Vat) and (MS)p are true.

Firstly, the integrality statements in Theorems 1.2(i) and 1.3(i) follow from Proposition 5.5.
If we abbreviate ρFn ⊗ψ by ρn,ψ, and σFn ⊗ψ by σn,ψ, then

∣∣RS(E1, ρn,ψ)−RS(E2, ρn,ψ)
∣∣
p

will
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be equal to∣∣∣RS(E1, ρn,ψ)−RS(E1, σn,ψ) +RS(E1, σn,ψ)−RS(E2, σn,ψ) +RS(E2, σn,ψ)−RS(E2, ρn,ψ)
∣∣∣
p

≤ max
{∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)

∣∣
p
,
∣∣RS(E? , ρn,ψ)−RS(E? , σn,ψ)

∣∣
p

for each ? ∈ {1, 2}
}

upon applying the strong triangle inequality. Therefore, we just need to find upper bounds for∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)
∣∣
p

and
∣∣RS(E? , ρn,ψ)−RS(E? , σn,ψ)

∣∣
p
,

which we shall do on a case-by-case basis.

Case 1 – p - tp(E?): Since E1 and E2 have ordinary reduction at p, by Theorem 4.5(i) one has∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)
∣∣
p
≤ p−1,

while Theorem 5.6(i) implies∣∣RS(E? , ρn,ψ)−RS(E? , σn,ψ)
∣∣
p
≤ p−1

hence Theorem 1.2(ii) now follows. The non-triviality assertion for infinitely many ψ-twists is
itself an immediate consequence of Theorem 5.6(ii).

Case 2a – p | tp(E?), tp(E1) = tp(E2) = 0 and ψ 6= 1: Using Theorem 4.5(ii), we deduce that∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)
∣∣
p
≤ pf(σn,ψ ,p)/2−1.

Case 2b – p | tp(E?), tp(E1) = tp(E2) = 0 and ψ = 1: Again by Theorem 4.5(ii), one finds∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)
∣∣
p
≤ pf(σn,ψ ,p)/2.

Case 3 – p | tp(E?), tp(E1) 6= 0 or tp(E2) 6= 0: From Theorem 4.5(iii), we conclude that∣∣RS(E1, σn,ψ)−RS(E2, σn,ψ)
∣∣
p
< pf(σn,ψ ,p)/2+1.

Note in each of Cases 2a, 2b and 3, one additionally knows from Theorem 3.7 that∣∣RS(E? , ρn,ψ)−RS(E? , σn,ψ)
∣∣
p
< pf(ρn,ψ ,p)/2.

To complete the proof of Theorem 1.3(ii), one simply observes that f(σn,ψ, p) + 1 < f(ρn,ψ, p),
unless one has n = 1, ψ = 1, ∆p−1 ≡ 1 (mod p2) in which case f(σn,1, p) = f(ρn,1, p) = p − 2
(see Lemma 3.8 for the details).

Putting everything together in the supersingular case, if p | tp(E?) then∣∣RS(E1, ρn,ψ)−RS(E2, ρn,ψ)
∣∣
p
< max

{
pf(σn,ψ ,p)/2+1, pf(ρn,ψ ,p)/2

}
= pf(ρn,ψ ,p)/2.

The demonstration of the two theorems from the Introduction is now finished.

5.4 An application to the µ- and λ-invariants

As already mentioned in the proof of Theorem 5.6, when p is an ordinary prime for E1 and E2,
the values RS(E?, ρFn ⊗ ψ) are interpolated by the p-adic L-function Lp(E?, ρFn) as ψ varies.
Using our modulo p congruence relation, one may deduce the following equalities between the
Iwasawa invariants of Lp(E1, ρFn) and Lp(E2, ρFn).
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Theorem 5.7. If E1 and E2 have ordinary reduction at p, and Hypotheses (MS)p and (Vat)
hold true, then

(a) the µ-invariants of Lp
(
E1, ρFn

)
and Lp

(
E2, ρFn

)
are both zero;

(b) the λ-invariants of Lp
(
E1, ρFn

)
and Lp

(
E2, ρFn

)
will be equal.

Proof. We recall from the proof of Theorem 5.6 that Hypothesis (Vat) implies the algebraic
integers RS(E?, ρFn⊗ψ) are not divisible by p for infinitely many characters ψ, which establishes
assertion (a). Statement (b) itself is an immediate consequence of [DL15, Lemma 2.1].

We point out that this theorem is a direct analogue of Emerton, Pollack and Weston’s results,
concerning the Iwasawa invariants of p-adic L-functions for modular forms belonging to the
same Hida family (c.f. [EPW06, Theorems 1 and 2]).

5.5 Remarks on our hypotheses

Note that the Iwasawa main conjecture predicts the ρFn-twisted Selmer group for E? over the
cyclotomic Zp-extension should be a Zp

[[
Γcy
n

]]
-cotorsion module; furthermore, the characteristic

power series of its Pontrjagin dual (conjecturally) equals Lp
(
E?, ρFn

)
, up to a unit of Zp

[[
Γcy
n

]]
.

Therefore, if the ρFn-twisted Iwasawa main conjecture holds true then Hypothesis (MS)p must
automatically be true as well, since a characteristic power series is always p-integral.

One should, of course, ask what occurs if either of Hypotheses (Vat) or (MS)p do not hold –
here one needs to modify Theorems 1.2 and 1.3, replacing RS(E? , %) with the rescaled version

R†S(E? , %) := T?,Fn ×RS(E? , %).

The arguments outlined in this paper still work fine, and our results now become hypothesis-free.

Finally, there is no need to insist that f1 and f2 only satisfy a mod p congruence; instead
one can assume their coefficients are such that tm(E1) ≡ tm(E2) (mod pr) if gcd(m,N1N2) = 1,
which is a stronger condition when r > 1 than before.

Conjecture 5.8. If E1 and E2 have good reduction at p > 2, and if S0 ∪ S1 ∪ S2 ⊂ S, then

∣∣∣RS(E1, ρFn ⊗ ψ)−RS(E2, ρFn ⊗ ψ)
∣∣∣
p
≤

{
p−r if p - tp(E?)
p−r+f(ρFn⊗ψ,p)/2 if p | tp(E?).

To establish this prediction for each r ≥ 2, would require a radically different approach to that
outlined in this article. Nevertheless, it is certainly a problem ripe for numerical investigation.
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